Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction.

The autophagy-related proteins are thought to serve multiple functions in Plasmodium and are considered essential to parasite survival and development. We have studied two key interacting proteins, Atg8 and Atg3, of the autophagy pathway in Plasmodium falciparum. These proteins are vital for the formation and elongation of the autophagosome and essential to the process of macroautophagy. Autophagy may be required for conversion of the sporozoite into erythrocytic-infective merozoites and may be crucial for other functions during asexual blood stages. Here we describe the identification of an Atg8 family interacting motif (AIM) in Plasmodium Atg3, which binds Plasmodium Atg8. We determined the co-crystal structure of PfAtg8 with a short Atg3¹⁰³⁻¹¹⁰ peptide, corresponding to this motif, to 2.2 Å resolution. Our in vitro interaction studies are in agreement with our X-ray crystal structure. Furthermore they suggest an important role for a unique Apicomplexan loop absent from human Atg8 homologues. Prevention of the protein-protein interaction of full length PfAtg8 with PfAtg3 was achieved at low micromolar concentrations with a small molecule, 1,2,3-trihydroxybenzene. Together our structural and interaction studies represent a starting point for future antimalarial drug discovery and design for this novel protein-protein interaction.

[1]  Kam Y. J. Zhang,et al.  A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design , 2005, Nature Biotechnology.

[2]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[3]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[4]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[5]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[6]  Jay Painter,et al.  Electronic Reprint Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion , 2005 .

[7]  Hiroyuki Kumeta,et al.  Autophagy-related Protein 8 (Atg8) Family Interacting Motif in Atg3 Mediates the Atg3-Atg8 Interaction and Is Crucial for the Cytoplasm-to-Vacuole Targeting Pathway* , 2010, The Journal of Biological Chemistry.

[8]  G. N. Ramachandran,et al.  Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. , 1965, Biophysical journal.

[9]  D. V. Von Hoff,et al.  Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach , 2006, Molecular Cancer Therapeutics.

[10]  F. Inagaki,et al.  Structural basis of target recognition by Atg8/LC3 during selective autophagy , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[11]  P. Roepe,et al.  Autophagy in Apicomplexa: a life sustaining death mechanism? , 2012, Trends in parasitology.

[12]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[13]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[14]  T. Nozaki,et al.  Autophagy during Proliferation and Encystation in the Protozoan Parasite Entamoeba invadens , 2007, Infection and Immunity.

[15]  D. Fass,et al.  Structure of GATE-16, Membrane Transport Modulator and Mammalian Ortholog of Autophagocytosis Factor Aut7p* , 2000, The Journal of Biological Chemistry.

[16]  Zygmunt S Derewenda,et al.  Application of protein engineering to enhance crystallizability and improve crystal properties. , 2010, Acta crystallographica. Section D, Biological crystallography.

[17]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[18]  M. Donnenberg,et al.  Rapid site-directed domain scanning mutagenesis of enteropathogenic Escherichia coli espD , 2007, Biological Procedures Online.

[19]  J. Snoeyink,et al.  Defining and Computing Optimum RMSD for Gapped and Weighted Multiple-Structure Alignment , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[21]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[22]  K. Ogura,et al.  Structural basis of Atg8 activation by a homodimeric E1, Atg7. , 2011, Molecular cell.

[23]  Sébastien Besteiro,et al.  Which roles for autophagy in Toxoplasma gondii and related apicomplexan parasites? , 2012, Molecular and biochemical parasitology.

[24]  S. Moss,et al.  The X-ray Crystal Structure and Putative Ligand-derived Peptide Binding Properties of γ-Aminobutyric Acid Receptor Type A Receptor-associated Protein* , 2002, The Journal of Biological Chemistry.

[25]  Jürgen Bosch,et al.  Structure of the MTIP-MyoA complex, a key component of the malaria parasite invasion motor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Makedonka Mitreva,et al.  Targeting Protein-Protein Interactions for Parasite Control , 2011, PloS one.

[27]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[28]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[29]  Daniel J. Rigden,et al.  Autophagy in protists , 2011, Autophagy.

[30]  Michèle N Schulz,et al.  Recent progress in fragment-based lead discovery. , 2009, Current opinion in pharmacology.

[31]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[32]  Gianni Chessari,et al.  Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. , 2006, Journal of medicinal chemistry.

[33]  Shou-Jiang Gao,et al.  FLIP-mediated autophagy regulation in cell death control , 2009, Nature Cell Biology.

[34]  T. Mizushima,et al.  Structural Basis for Sorting Mechanism of p62 in Selective Autophagy* , 2008, Journal of Biological Chemistry.

[35]  G. Giaccone,et al.  Phase II Study of Single-Agent Navitoclax (ABT-263) and Biomarker Correlates in Patients with Relapsed Small Cell Lung Cancer , 2012, Clinical Cancer Research.

[36]  Jürgen Bosch,et al.  The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery. , 2007, Journal of molecular biology.

[37]  Asher Mullard,et al.  Protein–protein interaction inhibitors get into the groove , 2012, Nature Reviews Drug Discovery.

[38]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[39]  Chris Abell,et al.  Fragment-based approaches to enzyme inhibition. , 2007, Current opinion in biotechnology.

[40]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[41]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[42]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[43]  P. Güntert,et al.  Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. , 2011, Journal of molecular biology.

[44]  D. Moras,et al.  Overexpression, purification, and crystal structure of native ER alpha LBD. , 2001, Protein expression and purification.

[45]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[46]  Gianni Chessari,et al.  Fragment-based discovery of mexiletine derivatives as orally bioavailable inhibitors of urokinase-type plasminogen activator. , 2008, Journal of medicinal chemistry.

[47]  V. Turk,et al.  Autophagy Is Involved in Nutritional Stress Response and Differentiation in Trypanosoma cruzi* , 2008, Journal of Biological Chemistry.

[48]  D. Graham,et al.  Ookinete-Interacting Proteins on the Microvillar Surface are Partitioned into Detergent Resistant Membranes of Anopheles gambiae Midguts , 2011, Journal of proteome research.

[49]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[50]  B. Striepen,et al.  Autophagy Protein Atg3 is Essential for Maintaining Mitochondrial Integrity and for Normal Intracellular Development of Toxoplasma gondii Tachyzoites , 2011, PLoS pathogens.

[51]  T. Tsuboi,et al.  Autophagy-Related Atg8 Localizes to the Apicoplast of the Human Malaria Parasite Plasmodium falciparum , 2012, PloS one.

[52]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[53]  I. Coppens,et al.  Autophagy in parasitic protists: unique features and drug targets. , 2011, Molecular and biochemical parasitology.

[54]  Kung-Hsien Ho,et al.  Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function , 2009, Autophagy.

[55]  J. Canon,et al.  Structure-based design of novel inhibitors of the MDM2-p53 interaction. , 2012, Journal of medicinal chemistry.

[56]  Rutger H A Folmer,et al.  Discovery of a novel warhead against beta-secretase through fragment-based lead generation. , 2007, Journal of medicinal chemistry.

[57]  Gianni Chessari,et al.  Application of fragment screening by X-ray crystallography to beta-secretase. , 2007, Journal of medicinal chemistry.

[58]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[59]  Masahiro Watanabe,et al.  The NMR structure of the autophagy-related protein Atg8 , 2010, Journal of biomolecular NMR.

[60]  F. Inagaki,et al.  The crystal structure of microtubule‐associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8 , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[61]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[62]  Gianni Chessari,et al.  Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. , 2007, Journal of medicinal chemistry.

[63]  Nathaniel Echols,et al.  The Phenix software for automated determination of macromolecular structures. , 2011, Methods.

[64]  D. Rigden,et al.  Autophagy in protists: examples of secondary loss, lineage-specific innovations, and the conundrum of remodeling a single mitochondrion , 2009, Autophagy.

[65]  G. H. Coombs,et al.  Endosome Sorting and Autophagy Are Essential for Differentiation and Virulence of Leishmania major* , 2006, Journal of Biological Chemistry.