Computing quantum discord is NP-complete

We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.

[1]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[2]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[3]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[4]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[5]  Yichen Huang Erratum: Entanglement criteria via concave-function uncertainty relations [Phys. Rev. A 82, 012335 (2010)] , 2010 .

[6]  Yichen Huang,et al.  Variance-based uncertainty relations , 2010, 1012.3105.

[7]  M. Piani Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.

[8]  Andreas J. Winter,et al.  Distilling common randomness from bipartite quantum states , 2004, IEEE Transactions on Information Theory.

[9]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[10]  Yichen Huang,et al.  Scaling of quantum discord in spin models , 2013, 1307.6034.

[11]  Matthias Christandl,et al.  A quasipolynomial-time algorithm for the quantum separability problem , 2010, STOC '11.

[12]  Michał Horodecki,et al.  An additive and operational entanglement measure: conditional entanglement of mutual information. , 2008, Physical review letters.

[13]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[14]  M. Wolf,et al.  Bound entangled Gaussian states. , 2000, Physical review letters.

[15]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[16]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[17]  Robabeh Rahimi,et al.  Single-experiment-detectable nonclassical correlation witness , 2009, 0911.3460.

[18]  Daniel A. Lidar,et al.  Distance bounds on quantum dynamics , 2008, 0803.4268.

[19]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[20]  Yichen Huang,et al.  Entanglement criteria via concave-function uncertainty relations , 2010 .

[21]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[22]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[23]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[24]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[25]  Lei Wang,et al.  A new criterion for zero quantum discord , 2011, 1102.5249.

[26]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[27]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[28]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[29]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  A. Winter,et al.  Remarks on Additivity of the Holevo Channel Capacity and of the Entanglement of Formation , 2002, quant-ph/0206148.

[31]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[32]  Lin Chen,et al.  Detecting multipartite classical states and their resemblances , 2010, 1005.4348.

[33]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[34]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[35]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[36]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[37]  Matthias Christandl,et al.  Erratum to: Faithful Squashed Entanglement , 2012 .

[38]  Animesh Datta,et al.  QUANTUM DISCORD AS A RESOURCE IN QUANTUM COMMUNICATION , 2012, 1204.6042.

[39]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[40]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[41]  M. Koashi,et al.  Monogamy of quantum entanglement and other correlations (6 pages) , 2004 .

[42]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[43]  H. Zaraket,et al.  Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .

[44]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[45]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[46]  M. Nielsen Continuity bounds for entanglement , 1999, quant-ph/9908086.

[47]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.

[48]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[49]  H. P. Robertson The Uncertainty Principle , 1929 .

[50]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[51]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[52]  A. Rajagopal,et al.  Generalized information theoretic measure to discern the quantumness of correlations. , 2007, Physical review letters.

[53]  J. Eisert,et al.  Optimal entanglement witnesses for continuous-variable systems , 2005, quant-ph/0510077.

[54]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.

[55]  Nan Li,et al.  Classical states versus separable states , 2008 .

[56]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[57]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[58]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[59]  Sixia Yu,et al.  Quantum discord of two-qubit X states , 2011, 1102.0181.

[60]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[61]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[62]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[63]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  G. Giedke,et al.  Gaussian entanglement of formation , 2004 .

[65]  Yichen Huang Entanglement Detection: Complexity and Shannon Entropic Criteria , 2013, IEEE Transactions on Information Theory.

[66]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[67]  A. Winter,et al.  Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.

[68]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[69]  W. Beckner Inequalities in Fourier analysis , 1975 .

[70]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[71]  Yichen Huang,et al.  Quantum discord for two-qubit X states: Analytical formula with very small worst-case error , 2013, 1306.0228.

[72]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[73]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[75]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[76]  M Christandl,et al.  Broadcast copies reveal the quantumness of correlations. , 2009, Physical review letters.

[77]  Yichen Huang,et al.  Entropic uncertainty relations in multidimensional position and momentum spaces , 2011, 1101.2944.

[78]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[79]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[80]  Gernot Alber,et al.  Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] , 2010 .

[81]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[82]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[83]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[84]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[85]  Giacomo Mauro D'Ariano,et al.  Classical randomness in quantum measurements , 2004, quant-ph/0408115.

[86]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[87]  Fgsl Brandão,et al.  Erratum to: Faithful Squashed Entanglement (Commun. Math. Phys., (2012), 306, (805-830)) , 2012 .

[88]  Xiao-Ming Lu,et al.  Optimal measurements to access classical correlations of two-qubit states , 2010, 1009.1476.

[89]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[90]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[91]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.