Object-centered surface reconstruction: Combining multi-image stereo and shading

Our goal is to reconstruct both the shape and reflectance properties of surfaces from multiple images. We argue that an object-centered representation is most appropriate for this purpose because it naturally accommodates multiple sources of data, multiple images (including motion sequences of a rigid object), and self-occlusions. We then present a specific object-centered reconstruction method and its implementation. The method begins with an initial estimate of surface shape provided, for example, by triangulating the result of conventional stereo. The surface shape and reflectance properties are then iteratively adjusted to minimize an objective function that combines information from multiple input images. The objective function is a weighted sum of stereo, shading, and smoothness components, where the weight varies over the surface. For example, the stereo component is weighted more strongly where the surface projects onto highly textured areas in the images, and less strongly otherwise. Thus, each component has its greatest influence where its accuracy is likely to be greatest. Experimental results on both synthetic and real images are presented.

[1]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[2]  H. K. Nishihara,et al.  Practical Real-Time Imaging Stereo Matcher , 1984 .

[3]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[4]  Andrew Blake,et al.  Surface descriptions from stereo and shading , 1986, Image Vis. Comput..

[5]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[7]  조규상,et al.  Stereo 영상의 Matching Algorithm , 1987 .

[8]  L. Quam Hierarchical warp stereo , 1987 .

[9]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[10]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Y. G. Leclerc The local structure of image intensity discontinuities , 1989 .

[12]  John Y. Aloimonos,et al.  Unification and integration of visual modules: an extension of the Marr Paradigm , 1989 .

[13]  M. J. Hannah A system for digital stereo image matching , 1989 .

[14]  Mark Carlotto,et al.  A method for shape-from-shading using multiple images acquired under different viewing and lighting conditions , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Frank P. Ferrie,et al.  From uncertainty to visual exploration , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[16]  Frank P. Ferrie,et al.  Recovery of Volumetric Object Descriptions From Laser Rangefinder Images , 1990, ECCV.

[17]  A. Lynn Abbott,et al.  Active surface reconstruction by integrating focus, vergence, stereo, and camera calibration , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[18]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[19]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Rangasami L. Kashyap,et al.  3-D Shape from a Shaded and Textural Surface Image , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Aaron F. Bobick,et al.  The direct computation of height from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Takeo Kanade,et al.  A multiple-baseline stereo , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Reinhard Koch,et al.  Shape adaptation for modelling of 3D objects in natural scenes , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Richard Szeliski,et al.  Shape from rotation , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Emmanuel P. Baltsavias,et al.  Multiphoto geometrically constrained matching , 1991 .

[27]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Demetri Terzopoulos,et al.  Sampling and reconstruction with adaptive meshes , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Laurent D. Cohen,et al.  Introducing new deformable surfaces to segment 3D images , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  R. Malladi,et al.  Deformable models: canonical parameters for surface representation and multiple view integration , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Pascal Fua,et al.  Segmenting Unstructured 3D Points into Surfaces , 1992, ECCV.

[33]  Yuan-Fang Wang,et al.  Surface Reconstruction Using Deformable Models with Interior and Boundary Constraints , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[35]  W. Eric L. Grimson,et al.  Introduction to the Special Issue on Interpretation of 3-D Scenes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[37]  William H. Press,et al.  Numerical recipes in C++: the art of scientific computing, 2nd Edition (C++ ed., print. is corrected to software version 2.10) , 1994 .

[38]  Ernest M. Stokely,et al.  Surface Parametrization and Curvature Measurement of Arbitrary 3-D Objects: Five Practical Methods , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Christian Heipke,et al.  Integration of Digital Image Matching and Multi Image Shape from Shading , 1992, DAGM-Symposium.

[40]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  J. Buchar,et al.  The calibration problem , 1998 .

[42]  Refractor Vision , 2000, The Lancet.

[43]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[44]  Demetri Terzopoulos,et al.  Signal matching through scale space , 1986, International Journal of Computer Vision.

[45]  Minoru Asada,et al.  Dynamic integration of height maps into a 3D world representation from range image sequences , 2004, International Journal of Computer Vision.

[46]  Demetri Terzopoulos,et al.  Symmetry-seeking models and 3D object reconstruction , 1988, International Journal of Computer Vision.

[47]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[48]  David B. Cooper,et al.  Asymptotic bayesian surface estimation using an image sequence , 1991, International Journal of Computer Vision.

[49]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[50]  Alex Pentland,et al.  Automatic extraction of deformable part models , 1990, International Journal of Computer Vision.

[51]  Stephen T. Barnard,et al.  Stochastic stereo matching over scale , 1989, International Journal of Computer Vision.

[52]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[53]  Pascal Fua,et al.  Model driven edge detection , 1990, Machine Vision and Applications.

[54]  B. Wrobel THE EVOLUTION OF DIGITALPHOTOGRAMMETRYFROM ANALYTICAL PHOTOGRAMMETRY , 2006 .