Two-stage parameter estimation algorithms for Box-Jenkins systems

A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box-Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.

[1]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[2]  Zhiwei Gao,et al.  Dynamic modelling and Robust Fault Detection of a gas turbine engine , 2008, 2008 American Control Conference.

[3]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..

[4]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[5]  Jie Ding,et al.  Bias compensation‐based parameter estimation for output error moving average systems , 2011 .

[6]  Ding Feng Computational efficiency of the identification methods.Part A:Recursive algorithms , 2012 .

[7]  Feng Ding,et al.  Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems , 2012, Math. Comput. Model..

[8]  Feng Ding,et al.  Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems , 2012, Int. J. Comput. Math..

[9]  Rui Ding,et al.  TS-RLS algorithm for pseudo-linear regressive models , 2012, 2012 American Control Conference (ACC).

[10]  Jie Jia,et al.  Two-stage recursive least squares parameter estimation algorithm for output error models , 2012, Math. Comput. Model..

[11]  F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling ☆ , 2013 .

[12]  Milorad R. Stevanovic,et al.  Algorithm for Fourier coefficient estimation , 2011 .

[13]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[14]  Y. Liu,et al.  Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems , 2012, J. Syst. Control. Eng..

[15]  Shaikh Anowarul Fattah,et al.  Identification of autoregressive moving average systems based on noise compensation in the correlation domain , 2011 .

[16]  Huazhen Fang,et al.  Genetic adaptive state estimation with missing input/output data , 2010 .

[17]  Feng Ding,et al.  Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems , 2010, Comput. Math. Appl..

[18]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[19]  Wei Wang,et al.  Maximum likelihood least squares identification for systems with autoregressive moving average noise , 2012 .

[20]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[21]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Feng Ding,et al.  Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems , 2010, Math. Comput. Model..

[24]  Feng Ding,et al.  Gradient based and least-squares based iterative identification methods for OE and OEMA systems , 2010, Digit. Signal Process..

[25]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[26]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[27]  Feng Ding,et al.  Decomposition based fast least squares algorithm for output error systems , 2013, Signal Process..

[28]  Kamel Abderrahim,et al.  New approaches to finite impulse response systems identification using higher-order statistics , 2010 .

[29]  Feng Ding,et al.  Parameter estimation with scarce measurements , 2011, Autom..

[30]  F. Ding Two-stage iterative estimation algorithm for systems with colored noises using the data filtering , 2012, 2012 24th Chinese Control and Decision Conference (CCDC).

[31]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[32]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[33]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[34]  Ruifeng Ding,et al.  Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average (CARMA) systems , 2012, Comput. Math. Appl..

[35]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[36]  P. X. Liu,et al.  Multiinnovation Least-Squares Identification for System Modeling , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  Guowei Yang,et al.  Gradient-based iterative parameter estimation for Box-Jenkins systems , 2010, Comput. Math. Appl..

[38]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[39]  Zhi-Hao Cao Rounding error analysis of two-stage iterative methods for large linear systems , 2003, Appl. Math. Comput..

[40]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[41]  M. Yan,et al.  Robust discrete-time sliding mode control for uncertain systems with time-varying state delay , 2008 .

[42]  Yang Shi,et al.  Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains , 2009, IEEE Transactions on Automatic Control.