Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially

[1]  J D Schall,et al.  Retinal constraints on orientation specificity in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[3]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[4]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  A. Leventhal,et al.  Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat , 1984, The Journal of comparative neurology.

[6]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  A. Leventhal,et al.  Relationship between preferred orientation and receptive field position of neurons in cat striate cortex , 1983, The Journal of comparative neurology.

[8]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[9]  Manfred Fahle,et al.  Curvature detection in the central and peripheral visual field of human subjects , 1983 .

[10]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[11]  C. Cintron,et al.  The healing of linear nonperforating wounds in rabbit corneas of different ages. , 1982, Investigative ophthalmology & visual science.

[12]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  W. Levick,et al.  Analysis of orientation bias in cat retina , 1982, The Journal of physiology.

[14]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[15]  E. Batschelet Circular statistics in biology , 1981 .

[16]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[17]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[18]  S. Ronner,et al.  Orientation anisotropy in monkey visual cortex , 1978, Brain Research.

[19]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[20]  R. Mansfield,et al.  Neural Basis of Orientation Perception in Primate Vision , 1974, Science.

[21]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[22]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[23]  S. Appelle Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. , 1972, Psychological bulletin.

[24]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[25]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[26]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.