Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators

Motivated by recent interest for multi-agent systems and smart grid architectures, we discuss the synchronization problem for the network-reduced model of a power system with non-trivial transfer conductances. Our key insight is to exploit the relationship between the power network model and a first-order model of coupled oscillators. Assuming overdamped generators (possibly due to local excitation controllers), a singular perturbation analysis shows the equivalence between the classic swing equations and a non-uniform Kuramoto model characterized by multiple time constants, non-homogeneous coupling, and non-uniform phase shifts. By extending methods from synchronization theory and consensus protocols, we establish sufficient conditions for synchronization of non-uniform Kuramoto oscillators. These conditions reduce to and improve upon previously-available tests for the classic Kuramoto model. By combining our singular perturbation and Kuramoto analyses, we derive concise and purely algebraic conditions that relate synchronization and transient stability of a power network to the underlying network parameters and initial conditions.

[1]  P. Kundur,et al.  Power system stability and control , 1994 .

[2]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[3]  Yun Zou,et al.  Theoretical foundation of the controlling UEP method for direct transient-stability analysis of network-preserving power system models , 2003 .

[4]  Francesco Bullo,et al.  Transient Stability Analysis in Power Networks and Synchronization of Non-uniform Kuramoto Oscillators , 2009 .

[5]  F. Bullo,et al.  Spectral Analysis of Synchronization in a Lossless Structure-Preserving Power Network Model , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[6]  Frank Allgöwer,et al.  Consensus reaching in multi-agent packet-switched networks with non-linear coupling , 2009, Int. J. Control.

[7]  Dirk Aeyels,et al.  Existence of Partial Entrainment and Stability of Phase Locking Behavior of Coupled Oscillators , 2004 .

[8]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[9]  H. Happ Power system control and stability , 1979, Proceedings of the IEEE.

[10]  F.F. Wu,et al.  Direct methods for transient stability analysis of power systems: Recent results , 1985, Proceedings of the IEEE.

[11]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[12]  Chia-Chi Chu,et al.  Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective , 1995, Proc. IEEE.

[13]  Francesco Bullo,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2010, ACC 2010.

[14]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[15]  N. Bretas,et al.  Lyapunov function for power systems with transfer conductances: extension of the Invariance principle , 2003 .

[16]  David J. Hill,et al.  Power systems as dynamic networks , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[17]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[18]  Anna Scaglione,et al.  Generating Random Topology Power Grids , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[19]  Frank Allgöwer,et al.  Multi-agent speed consensus via delayed position feedback with application to Kuramoto oscillators , 2009, 2009 European Control Conference (ECC).

[20]  Manfredi Maggiore,et al.  State Agreement for Continuous-Time Coupled Nonlinear Systems , 2007, SIAM J. Control. Optim..

[21]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[22]  H. Chiang Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications , 2010 .

[23]  Dirk Aeyels,et al.  Partial entrainment in the finite Kuramoto-Sakaguchi model , 2007 .

[24]  G. Filatrella,et al.  Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.

[25]  Vijay Vittal,et al.  Power system transient stability analysis: Formulation as nearly Hamiltonian systems , 1984 .

[26]  Hsiao-Dong Chiang,et al.  Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system. Models with small transfer conductances , 1995 .

[27]  L. Moreau,et al.  Stability of continuous-time distributed consensus algorithms , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[28]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[29]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[30]  J. L. Hemmen,et al.  Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators , 1993 .

[31]  Newton G. Bretas,et al.  Synchronism versus stability in power systems , 1999 .

[32]  Pablo Monzon,et al.  Almost Global Synchronization of Symmetric Kuramoto Coupled Oscillators , 2008 .

[33]  Vijay Vittal Harpole Transient Stability and Control of Large Scale Power Systems , 2003 .

[34]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[35]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[36]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[37]  Felix F. Wu,et al.  Foundations of the potential energy boundary surface method for power system transient stability analysis , 1988 .

[38]  Luís F. C. Alberto,et al.  Smooth perturbation on a classical energy function for lossy power system stability analysis , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  R. Podmore,et al.  A Practical Method for the Direct Analysis of Transient Stability , 1979, IEEE Transactions on Power Apparatus and Systems.

[40]  J. Baillieul The critical point analysis of electric power systems , 1984, The 23rd IEEE Conference on Decision and Control.

[41]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[42]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[43]  Seung-Yeal Ha,et al.  Flocking and synchronization of particle models , 2010 .

[44]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[45]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[46]  Edward Wilson Kimbark,et al.  Power System Stability , 1948 .

[47]  Florian Dörfler,et al.  On the Critical Coupling for Kuramoto Oscillators , 2010, SIAM J. Appl. Dyn. Syst..

[48]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[49]  A. Lichtenberg,et al.  Self-synchronization of coupled oscillators with hysteretic responses , 1997 .

[50]  C.W. Taylor,et al.  The anatomy of a power grid blackout - Root causes and dynamics of recent major blackouts , 2006, IEEE Power and Energy Magazine.

[51]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[52]  Alessandro Astolfi,et al.  Transient stabilization of multimachine power systems with nontrivial transfer conductances , 2005, IEEE Transactions on Automatic Control.

[53]  S. Strogatz,et al.  The spectrum of the locked state for the Kuramoto model of coupled oscillators , 2005 .

[54]  H. Chiang Study of the existence of energy functions for power systems with losses , 1989 .

[55]  Newton G. Bretas,et al.  Direct methods for transient stability analysis in power systems: state of art and future perspectives , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[56]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[57]  J. Baillieul,et al.  Geometric critical point analysis of lossless power system models , 1982 .

[58]  Newton G. Bretas,et al.  Required damping to assure multiswing transient stability: the SMIB case , 2000 .

[59]  Vittorio Rosato,et al.  Stability of a Distributed Generation Network Using the Kuramoto Models , 2008, CRITIS.

[60]  Jun Zhao,et al.  Global synchronization of complex dynamical networks with non-identical nodes , 2008, 2008 47th IEEE Conference on Decision and Control.

[61]  Hsiao-Dong Chiang,et al.  Boundary properties of the BCU method for power system transient stability assessment , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[62]  R. De Luca Strongly coupled overdamped pendulums , 2008 .

[63]  Carlos J. Tavora,et al.  Characterization of Equilibrium and Stability in Power Systems , 1972 .

[64]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[65]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .