Psychophysical evidence for separate channels for the perception of form, color, movement, and depth

Physiological and anatomical findings in the primate visual system, as well as clinical evidence in humans, suggest that different components of visual information processing are segregated into largely independent parallel pathways. Such a segregation leads to certain predictions about human vision. In this paper we describe psychophysical experiments on the interactions of color, form, depth, and movement in human perception, and we attempt to correlate these aspects of visual perception with the different subdivisions of the visual system.

[1]  L. A. N. Esq.,et al.  LXI. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid , 1832 .

[2]  J. Goddard XXVII. On the polarization of light by living animals: To the editors of the Philosophical Magazine and Journal of Science , 1839 .

[3]  W. Ware,et al.  The Theory of Color , 1879 .

[4]  R. Lewis Optical Illusions , 1892, Nature.

[5]  W. B. Pillsbury Beiträge zur Analyse der Gesichtswahrnehmungen , 1900 .

[6]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[7]  H. Ives A Chart of the Flicker Photometer , 1923 .

[8]  Susanne Liebmann,et al.  Über das Verhalten farbiger Formen bei Helligkeitsgleichhe von Figur und Grund , 1927 .

[9]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[10]  J. A. Gengerelli,et al.  Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres. , 1948, Journal of experimental psychology.

[11]  A BERLINER,et al.  The distortion of straight and curved lines in geometrical fields. , 1948, The American journal of psychology.

[12]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[13]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[14]  A. Stanworth,et al.  Retinal pigment and the Haidinger effect , 1954, The Journal of physiology.

[15]  G. Kanizsa Margini Quasi-percettivi in Campi con Stimolazione Omogenea , 1955 .

[16]  J. Krauskopf,et al.  Effect of retinal image motion on contrast thresholds for maintained vision. , 1957, Journal of the Optical Society of America.

[17]  D. Mackay Moving Visual Images produced by Regular Stationary Patterns , 1958, Nature.

[18]  Paul G. Roofe,et al.  The Vertebrate Visual System , 1958, Neurology.

[19]  R. W. Ditchburn,et al.  Vision with controlled movements of the retinal image , 1959, The Journal of physiology.

[20]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[21]  Charles Wheatstone On some remarkable and hitherto unobserved phenomena of binocular vision. , 1962 .

[22]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[23]  R. Gregory,et al.  Distortion of Visual Space as Inappropriate Constancy Scaling , 1963, Nature.

[24]  J. Krauskopf Effect of retinal image stabilization on the appearance of heterochromatic targets. , 1963, Journal of the Optical Society of America.

[25]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[26]  C. McCollough Color Adaptation of Edge-Detectors in the Human Visual System , 1965, Science.

[27]  Distribution δ(x)と跳躍量 , 1965 .

[28]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[29]  C R Cavonius,et al.  Human Visual Acuity Measured with Colored Test Objects , 1966, Science.

[30]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[31]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[32]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[33]  M. A. Bouman,et al.  Spatiotemporal modulation transfer in the human eye. , 1967, Journal of the Optical Society of America.

[34]  R. Steinman,et al.  Voluntary Control of Microsaccades during Maintained Monocular Fixation , 1967, Science.

[35]  J. Krauskopf Heterochromatic stabilized images: a classroom demonstration. , 1967, The American journal of psychology.

[36]  R. W. Ditchburn,et al.  Assembled data in eye movements. , 1967, Optica acta.

[37]  G Wald,et al.  Blue-blindness in the normal fovea. , 1967, Journal of the Optical Society of America.

[38]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[39]  N. Hepler Color: A Motion-Contingent Aftereffect , 1968, Science.

[40]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[41]  W. Ritchie Russell,et al.  Dissociated visual perceptual and spatial deficits in focal lesions of the right hemisphere , 1969 .

[42]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[43]  BELA JULESZ,et al.  Short Term Visual Memory and the Pulfrich Phenomenon , 1969, Nature.

[44]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[45]  C. Stromeyer,et al.  Colored aftereffects produced with moving edges , 1970 .

[46]  H. Bouma,et al.  Induced changes in the perceived orientation of line segments. , 1970, Vision research.

[47]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[48]  C. Blakemore,et al.  Lateral Inhibition between Orientation Detectors in the Human Visual System , 1970, Nature.

[49]  J. Kulikowski,et al.  Effect of eye movements on the contrast sensitivity of spatio-temporal patterns. , 1971, Vision research.

[50]  P. O. Bishop,et al.  Binocular interaction fields of single units in the cat striate cortex , 1971, The Journal of physiology.

[51]  U. T. Keesey Flicker and pattern detection: a comparison of thresholds. , 1972, Journal of the Optical Society of America.

[52]  M C Corballis,et al.  Motion Perception: A Color-Contingent Aftereffect , 1972, Science.

[53]  H. Barlow,et al.  Visual pattern analysis in machines and animals. , 1972, Science.

[54]  V. S. RAMACHANDRAN,et al.  Stereopsis generated with Julesz Patterns in Spite of Rivalry imposed by Colour Filters , 1972, Nature.

[55]  Stuart Anstis,et al.  Movement aftereffects contingent on color, intensity, and pattern , 1972 .

[56]  E. M. Granger,et al.  Visual chromaticity-modulation transfer function , 1973 .

[57]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[58]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[59]  W. Pohl,et al.  Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. , 1973, Journal of comparative and physiological psychology.

[60]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[61]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[62]  J. Comerford,et al.  Stereopsis with chromatic contours. , 1974, Vision research.

[63]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[64]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[65]  S. Zeki Cells responding to changing image size and disparity in the cortex of the rhesus monkey , 1974, The Journal of physiology.

[66]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[67]  W. B. Spatz An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix , 1975, Brain Research.

[68]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[69]  C. Tyler Stereoscopic Tilt and Size Aftereffects , 1975 .

[70]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[71]  H. F. van Tuijl A new visual illusion: neonlike color spreading and complementary color induction between subjective contours. , 1975, Acta psychologica.

[72]  D. Navon,et al.  Irrelevance of figural identity for resolving ambiguities in apparent motion. , 1976, Journal of experimental psychology. Human perception and performance.

[73]  D. Whitteridge,et al.  Binocular visual mechanisms in cortical areas I and II of the sheep. , 1976, The Journal of physiology.

[74]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[75]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[76]  E M Brussell,et al.  Sensory information and subjective contour. , 1977, The American journal of psychology.

[77]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[78]  R. Marc,et al.  Chromatic organization of primate cones. , 1977, Science.

[79]  E. Yund,et al.  Responses of macaque lateral geniculate cells to luminance and color figures. , 1977, Sensory processes.

[80]  C F Stromeyer,et al.  Form-Colour Aftereffects: Selectivity to Local Luminance Contrast , 1978, Perception.

[81]  R. M. Boynton,et al.  Chromatic border perception: The role of red- and green-sensitive cones , 1978, Vision Research.

[82]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[83]  J. Mayhew,et al.  Stereopsis Masking in Humans is Not Orientationally Tuned , 1978, Perception.

[84]  C. Curcio,et al.  Organization of pulvinar afferents to area 18 in the squirrel monkey: evidence for stripes , 1978, Brain Research.

[85]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[86]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[87]  J K Krüger Responses to wavelength contrast in the afferent visual systems of the cat and the rhesus monkey. , 1979, Vision research.

[88]  S. McKee,et al.  What prior uniocular processing is necessary for stereopsis? , 1979, Investigative ophthalmology & visual science.

[89]  C M de Weert Colour contours and stereopsis. , 1979, Vision research.

[90]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[91]  H. F. van Tuijl,et al.  Sensory Conditions for the Occurrence of the Neon Spreading Illusion , 1979, Perception.

[92]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[93]  R W Guillery,et al.  A speculative essay on geniculate lamination and its development. , 1979, Progress in brain research.

[94]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[95]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  B. Stabell,et al.  Variation in density of macular pigmentation and in short-wave cone sensitivity with eccentricity. , 1980, Journal of the Optical Society of America.

[97]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[98]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[99]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[100]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[101]  D. Macleod,et al.  Blue-sensitive cones do not contribute to luminance. , 1980, Journal of the Optical Society of America.

[102]  Jeremy M Wolfe,et al.  Is Accommodation Colorblind? Focusing Chromatic Contours , 1981, Perception.

[103]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[104]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[105]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[106]  F. Campbell,et al.  The influence of spatial frequency and contrast on the perception of moving patterns , 1981, Vision Research.

[107]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[108]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[109]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[110]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[111]  S. Zeki The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[112]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[113]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[114]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[115]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[116]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  P. Cavanagh,et al.  A minimum motion technique for judging equiluminance , 1983 .

[118]  Carol L. Colby,et al.  The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast , 1983, Vision Research.

[119]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[120]  V. S. Ramachandran,et al.  Perceptual organization in moving patterns , 1983, Nature.

[121]  E Switkes,et al.  Simultaneous masking interactions between chromatic and luminance gratings. , 1983, Journal of the Optical Society of America.

[122]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[123]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  B. Julesz,et al.  Cooperative phenomena in apparent movement perception of random-dot cinematograms , 1984, Vision Research.

[125]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[126]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[127]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  V S Ramachandran,et al.  Apparent Motion of Subjective Surfaces , 1985, Perception.

[129]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[130]  P. Cavanagh,et al.  Perception of Motion in Equiluminous Kinematograms , 1985, Perception.

[131]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[132]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[133]  P. Cavanagh,et al.  Subjective contours capture stereopsis , 1985, Nature.

[134]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[135]  V. Ramachandran,et al.  Perceptual Organization in Multistable Apparent Motion , 1985, Perception.

[136]  R. M. Boynton,et al.  Blue cones contribute to border distinctness , 1985, Vision Research.

[137]  Patrick Cavanagh,et al.  Color and luminance share a common motion pathway , 1985, Vision Research.

[138]  David R. Williams,et al.  Stereopsis with chromatic signals from the blue-sensitive mechanism , 1985, Vision Research.

[139]  D. Hubel,et al.  Complex–unoriented cells in a subregion of primate area 18 , 1985, Nature.

[140]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[141]  S. Anstis,et al.  Effects of Luminance and Contrast on Direction of Ambiguous Apparent Motion , 1985, Perception.

[142]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[143]  M. J. Morgan,et al.  Positional acuity with chromatic stimuli , 1985, Vision Research.

[144]  William H. Merigan,et al.  Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells , 1986, Vision Research.

[145]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[146]  V. S. Ramachandran,et al.  Perception of apparent motion by commissurotomy patients , 1986, Nature.

[147]  William H. Merigan,et al.  Selective acrylamide-induced degeneration of color opponent ganglion cells in macaques , 1986, Brain Research.

[148]  Marc Green,et al.  What determines correspondence strength in apparent motion? , 1986, Vision Research.

[149]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[150]  S. Klein,et al.  Sampling in spatial vision , 1986, Nature.

[151]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.