Inference of Nonlinear Spatial Subunits in Primate Retina with Spike-Triggered Clustering

Integration of rectified synaptic inputs is a widespread nonlinear motif in sensory neuroscience. We present a novel method for maximum likelihood estimation of nonlinear subunits by soft-clustering spike-triggered stimuli. Subunits estimated from parasol ganglion cells recorded in macaque retina partitioned the receptive field into compact regions, likely representing bipolar cell inputs. Joint clustering with multiple RGCs revealed shared subunits in neighboring cells, producing a parsimonious population model. Closed-loop subunit validation was then performed by projecting white noise into the null space of the linear receptive field. Responses to these null stimuli were more accurately explained by a model with multiple subunits, and were stronger in OFF cells than ON cells. Presentation of natural stimuli containing jittering edges and textures also revealed greater response prediction accuracy with the subunit model. Finally, the generality of the approach was demonstrated by application to V1 data.

[1]  Fred Rieke,et al.  Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina , 2018, bioRxiv.

[2]  Tiejun Huang,et al.  Characterizing Neuronal Circuits with Spike-triggered Non-negative Matrix Factorization , 2018, ArXiv.

[3]  Stefano Panzeri,et al.  Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization , 2017, Nature Communications.

[4]  M. Meister,et al.  Neural Circuit Inference from Function to Structure , 2017, Current Biology.

[5]  Liam Paninski,et al.  Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses , 2016, ICLR.

[6]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[7]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[8]  Fred Rieke,et al.  Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina , 2016, Neuron.

[9]  Eero P. Simoncelli,et al.  Testing pseudo-linear models of responses to natural scenes in primate retina , 2016, bioRxiv.

[10]  Anqi Wu,et al.  Convolutional spike-triggered covariance analysis for neural subunit models , 2015, NIPS.

[11]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[12]  Y. Tsukamoto,et al.  OFF bipolar cells in macaque retina: type-specific connectivity in the outer and inner synaptic layers , 2015, Front. Neuroanat..

[13]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[14]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[15]  Jonathan W. Pillow,et al.  Spectral methods for neural characterization using generalized quadratic models , 2013, NIPS.

[16]  Fred Rieke,et al.  Origin and Impact of Phototransduction Noise in Primate Cone Photoreceptors , 2013, Nature Neuroscience.

[17]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[18]  Liam Paninski,et al.  Fast inference in generalized linear models via expected log-likelihoods , 2013, Journal of Computational Neuroscience.

[19]  Matthias Bethge,et al.  Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification , 2012, PLoS Comput. Biol..

[20]  William Bialek,et al.  Maximally Informative “Stimulus Energies” in the Analysis of Neural Responses to Natural Signals , 2012, PloS one.

[21]  S. Morad,et al.  Ceramide-orchestrated signalling in cancer cells , 2012, Nature Reviews Cancer.

[22]  Martin J. Wainwright,et al.  Randomized smoothing for (parallel) stochastic optimization , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[23]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[24]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[25]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[26]  F. Rieke,et al.  Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2 , 2011, The Journal of general physiology.

[27]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[28]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[29]  Jonathon Shlens,et al.  Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.

[30]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[31]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[32]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[33]  F. Jäkel,et al.  Spatial four-alternative forced-choice method is the preferred psychophysical method for naïve observers. , 2006, Journal of vision.

[34]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[35]  Stephen A Engel,et al.  Motion from occlusion. , 2006, Journal of vision.

[36]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[37]  E. Chichilnisky,et al.  Fidelity of the ensemble code for visual motion in primate retina. , 2005, Journal of neurophysiology.

[38]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[39]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[40]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[41]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[42]  H. Cruse Constraints for joint angle control of the human arm , 1986, Biological Cybernetics.

[43]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[44]  Adrienne L. Fairhall,et al.  What Causes a Neuron to Spike? , 2003, Neural Computation.

[45]  D. A. Burkhardt,et al.  Center-surround organization in bipolar cells: Symmetry for opposing contrasts , 2003, Visual Neuroscience.

[46]  A.M. Litke,et al.  What does the eye tell the brain?: Development of a system for the large scale recording of retinal output activity , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[47]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[48]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[49]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[50]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[51]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[52]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[53]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[54]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[55]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[56]  S. Amara,et al.  Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina , 2000, The Journal of comparative neurology.

[57]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[58]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[59]  M. Meister,et al.  The Light Response of Retinal Ganglion Cells Is Truncated by a Displaced Amacrine Circuit , 1997, Neuron.

[60]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[61]  H M Sakai,et al.  White-noise analysis in neurophysiology. , 1992, Physiological reviews.

[62]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[63]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[64]  K I Naka,et al.  Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. , 1990, Journal of neurophysiology.

[65]  M J Korenberg,et al.  Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. , 1989, Journal of neurophysiology.

[66]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[67]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[68]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[69]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[70]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[71]  K. Naka,et al.  White-Noise Analysis of a Neuron Chain: An Application of the Wiener Theory , 1972, Science.

[72]  C. Enroth-Cugell,et al.  Algebraic Summation of Centre and Surround Inputs to Retinal Ganglion Cells of the Cat , 1970, Nature.

[73]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[74]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[75]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.