On Human Action

In this chapter we briefly discuss how human actions can be modeled. In particular, we very briefly review different approaches taken in computer vision and robotics. We touch briefly on concepts such as affordances, scene states, object-action complexes, action primitives, imitation learning, etc., and we relate the different approaches taken in Computer Vision and in Robotics. This chapter is meant to provide the bigger frame within which the following chapters of this part of the book are embedded.

[1]  Darren Newtson,et al.  The objective basis of behavior units. , 1977 .

[2]  P. Ekman,et al.  Facial action coding system: a technique for the measurement of facial movement , 1978 .

[3]  Michael A. Arbib,et al.  Perceptual Structures and Distributed Motor Control , 1981 .

[4]  Hans-Hellmut Nagel,et al.  From image sequences towards conceptual descriptions , 1988, Image Vis. Comput..

[5]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[6]  Masayuki Inaba,et al.  Learning by watching: extracting reusable task knowledge from visual observation of human performance , 1994, IEEE Trans. Robotics Autom..

[7]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[8]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[9]  James W. Davis,et al.  The Representation and Recognition of Action Using Temporal Templates , 1997, CVPR 1997.

[10]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[12]  Aaron F. Bobick,et al.  Parametric Hidden Markov Models for Gesture Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Sylvie Gibet,et al.  Proceedings of the International Gesture Workshop on Gesture-Based Communication in Human-Computer Interaction , 1999 .

[14]  Ying Wu,et al.  Vision-Based Gesture Recognition: A Review , 1999, Gesture Workshop.

[15]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[16]  Katsushi Ikeuchi,et al.  Recognition of human task by attention point analysis , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[17]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[19]  Katsushi Ikeuchi,et al.  Acquiring hand-action models by attention point analysis , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  G. Rizzolatti,et al.  Neurophysiological mechanisms underlying the understanding and imitation of action , 2001, Nature Reviews Neuroscience.

[21]  C. Breazeal,et al.  Robots that imitate humans , 2002, Trends in Cognitive Sciences.

[22]  Rodney A. Brooks,et al.  Humanoid robots , 2002, CACM.

[23]  Aude Billard,et al.  Imitation : a review , 2002 .

[24]  Stefan Schaal,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[25]  José Santos-Victor,et al.  Visual transformations in gesture imitation: what you see is what you do , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[26]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[27]  Yiannis Demiris,et al.  Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning , 2003, Connect. Sci..

[28]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[29]  Maja J. Mataric,et al.  Performance-Derived Behavior Vocabularies: Data-Driven Acquisition of Skills from Motion , 2004, Int. J. Humanoid Robotics.

[30]  Rüdiger Dillmann,et al.  Teaching and learning of robot tasks via observation of human performance , 2004, Robotics Auton. Syst..

[31]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[32]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[33]  Danica Kragic,et al.  Grasp Recognition for Programming by Demonstration , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[34]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[35]  Aude Billard,et al.  Goal-Directed Imitation in a Humanoid Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  Yiannis Demiris,et al.  Hierarchies of Coupled Inverse and Forward Models for Abstraction in Robot Action Planning, Recognition and Imitation , 2005 .

[37]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[38]  Thomas R. Zentall,et al.  Imitation: definitions, evidence, and mechanisms , 2006, Animal Cognition.

[39]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Jessica K. Hodgins,et al.  Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database , 2008 .

[42]  三嶋 博之 The theory of affordances , 2008 .

[43]  Dana Kulic,et al.  Incremental Learning, Clustering and Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov Chains , 2008, Int. J. Robotics Res..

[44]  Rama Chellappa,et al.  Machine Recognition of Human Activities: A Survey , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[45]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Larry S. Davis,et al.  Observing Human-Object Interactions: Using Spatial and Functional Compatibility for Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Florentin Wörgötter,et al.  Cognitive agents - a procedural perspective relying on the predictability of Object-Action-Complexes (OACs) , 2009, Robotics Auton. Syst..

[48]  Cordelia Schmid,et al.  Actions in context , 2009, CVPR.

[49]  Irfan A. Essa,et al.  A novel sequence representation for unsupervised analysis of human activities , 2009, Artif. Intell..

[50]  Rogério Schmidt Feris,et al.  Unsupervised Action Classification Using Space-Time Link Analysis , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[51]  Fei-Fei Li,et al.  Grouplet: A structured image representation for recognizing human and object interactions , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Danica Kragic,et al.  Learning Actions from Observations , 2010, IEEE Robotics & Automation Magazine.

[53]  Fei-Fei Li,et al.  Modeling mutual context of object and human pose in human-object interaction activities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Moritz Tenorth,et al.  Towards performing everyday manipulation activities , 2010, Robotics Auton. Syst..

[55]  Danica Kragic,et al.  Tracking people interacting with objects , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Advait Jain,et al.  EL-E: an assistive mobile manipulator that autonomously fetches objects from flat surfaces , 2010, Auton. Robots.

[57]  Andrew Gilbert,et al.  Action Recognition Using Mined Hierarchical Compound Features , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.