Online Learning Algorithms

AbstractIn this paper, we study an online learning algorithm in Reproducing Kernel Hilbert Spaces (RKHSs) and general Hilbert spaces. We present a general form of the stochastic gradient method to minimize a quadratic potential function by an independent identically distributed (i.i.d.) sample sequence, and show a probabilistic upper bound for its convergence.

[1]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[2]  G. Kallianpur A Note on the Robbins-Monro Stochastic Approximation Method , 1954 .

[3]  H. Robbins,et al.  A CONVERGENCE THEOREM FOR NON NEGATIVE ALMOST SUPERMARTINGALES AND SOME APPLICATIONS**Research supported by NIH Grant 5-R01-GM-16895-03 and ONR Grant N00014-67-A-0108-0018. , 1971 .

[4]  L. Györfi Stochastic approximation from ergodic sample for linear regression , 1980 .

[5]  I. Pinelis,et al.  Remarks on Inequalities for Large Deviation Probabilities , 1986 .

[6]  V. Yurinsky Sums and Gaussian Vectors , 1995 .

[7]  Philip M. Long,et al.  Worst-case quadratic loss bounds for prediction using linear functions and gradient descent , 1996, IEEE Trans. Neural Networks.

[8]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[9]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[10]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[11]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[12]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[13]  Felipe Cucker,et al.  Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..

[14]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[15]  Tong Zhang,et al.  Leave-One-Out Bounds for Kernel Methods , 2003, Neural Computation.

[16]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[17]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[18]  Alexander J. Smola,et al.  Online learning with kernels , 2001, IEEE Transactions on Signal Processing.

[19]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[20]  V. B. Tadic,et al.  On the almost sure rate of convergence of linear stochastic approximation algorithms , 2004, IEEE Transactions on Information Theory.

[21]  S. Smale,et al.  Shannon sampling II: Connections to learning theory , 2005 .

[22]  Lorenzo Rosasco,et al.  Model Selection for Regularized Least-Squares Algorithm in Learning Theory , 2005, Found. Comput. Math..

[23]  H. Robbins A Stochastic Approximation Method , 1951 .