A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle

Many studies have been published on the performance and optimisation of the Brayton cycle and solar thermal Brayton cycle showing the potential, merits and challenges of this technology. Solar thermal Brayton systems have potential to be used as power plants in many sun-drenched countries. It can be very competitive in terms of efficiency, cost and environmental impact. When designing a system such as a recuperative Brayton cycle there is always a compromise between allowing effective heat transfer and keeping pressure losses in components small. The high temperatures required in especially the receiver of the system present a challenge in terms of irreversibilities due to heat loss. In this paper, the authors recommend the use of the total entropy generation minimisation method. This method can be applied for the modelling of a system and can serve as validation when compared with first-law modelling. The authors review various modelling perspectives required to develop an objective function for solar thermal power optimisation, including modelling of the sun as an exergy source, the Gouy–Stodola theorem and turbine modelling. With recommendations, the authors of this paper wish to clarify and simplify the optimisation and modelling of the solar thermal Brayton cycle for future work. The work is applicable to solar thermal studies in general but focuses on the small-scale recuperated solar thermal Brayton cycle.

[1]  Sendhil Kumar Natarajan,et al.  An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator , 2009 .

[2]  Fengrui Sun,et al.  Performance analysis of a closed regenerated Brayton heat pump with internal irreversibilities , 1999 .

[3]  Piotr Furmański,et al.  EXERGY ANALYSIS OF DIFFERENT DESIGN CONCEPTS OF RECEIVERS/REACTORS FOR THERMOCHEMICAL CONVERSION OF CONCENTRATED SOLAR ENERGY , 2004 .

[4]  Abraham Kribus,et al.  The “Porcupine”: A Novel High-Flux Absorber for Volumetric Solar Receivers , 1998 .

[5]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[6]  D. Mills Advances in solar thermal electricity technology , 2004 .

[7]  Hua Wang,et al.  Exergy Analysis of Flat Plate Solar Collectors , 2014, Entropy.

[8]  Cha'o-Kuang Chen,et al.  Maximum power of an endoreversible intercooled Brayton cycle , 2000 .

[9]  Yue Zhang,et al.  Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency , 2007 .

[10]  A. Bejan Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture , 2002 .

[11]  Zhifeng Wang,et al.  Energy and exergy analysis of solar power tower plants , 2011 .

[12]  Adrian Bejan,et al.  Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics , 1996 .

[13]  Oskar Leufvén,et al.  Compressor Modeling for Control of Automotive Two Stage Turbochargers , 2010 .

[14]  Soteris A. Kalogirou,et al.  Entropy Generation Minimisation of Imaging Concentrating Solar Collectors , 2003 .

[15]  Adrian Bejan,et al.  Thermodynamic optimization of tree-shaped flow geometries , 2006 .

[16]  S. L. Dixon,et al.  Fluid mechanics, thermodynamics of turbomachinery , 1966 .

[17]  Ilya Kolmanovsky,et al.  Turbocharger Modeling for Automotive Control Applications , 1999 .

[18]  S. C. Kaushik,et al.  Exergetic analysis of a solar thermal power system , 2000 .

[19]  Pekka Ruohonen,et al.  Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis , 2009, Entropy.

[20]  Adrian Bejan,et al.  Thermodynamic optimization of tree-shaped flow geometries with constant channel wall temperature , 2006 .

[21]  Eric Hu,et al.  A medium-temperature solar thermal power system and its efficiency optimisation , 2002 .

[22]  S. Shaaban Experimental investigation and extended simulation of turbocharger non-adiabatic performance , 2004 .

[23]  R. Sims Renewable energy: a response to climate change , 2003 .

[24]  Silvia Marelli,et al.  Experimental analysis of unsteady flow performance in an automotive turbocharger turbine fitted with a waste-gate valve , 2011 .

[25]  Simon Andreas Frei Performance and driveability optimization of turbocharged engine systems , 2004 .

[26]  Colin F. McDonald,et al.  Recuperator considerations for future higher efficiency microturbines , 2003 .

[27]  Ibrahim Dincer,et al.  Development of new solar exergy maps , 2009 .

[28]  Per Lundqvist,et al.  An exergy analysis of a solar-driven ejector refrigeration system , 2004 .

[29]  Marc A. Rosen,et al.  Exergetic Efficiencies and the Exergy Content of Terrestrial Solar Radiation , 2004 .

[30]  Fletcher Miller,et al.  Theoretical analysis of a high-temperature small-particle solar receiver , 1991 .

[31]  Thorsten Denk,et al.  Test and evaluation of a solar powered gas turbine system , 2006 .

[32]  Jincan Chen,et al.  Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency , 2005 .

[33]  Fredrik Westin,et al.  Simulation of turbocharged SI-engines - with focus on the turbine , 2005 .

[34]  Zhifeng Wang,et al.  Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics , 2012 .

[35]  A. Bejan Unification of Three Different Theories Concerning the Ideal Conversion of Enclosed Radiation , 1987 .

[36]  Stanislaw Sieniutycz,et al.  Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy , 2005 .

[37]  Staffan Haugwitz,et al.  Modelling of microturbine systems , 2003, 2003 European Control Conference (ECC).

[38]  Murat Ozturk,et al.  Exergy Analysis of Low and High Temperature Water Gas Shift Reactor with Parabolic Concentrating Collector , 2010 .

[39]  A. Bejan,et al.  Second Law Analysis and Synthesis of Solar Collector Systems , 1981 .

[40]  Josua P. Meyer,et al.  Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receive , 2011 .

[41]  R. Tolman,et al.  On the irreversible production of entropy , 1948 .

[42]  P. I. Moynihan Second-law efficiency of solar-thermal cavity receivers , 1983 .

[43]  K. Glover,et al.  Parameterization and Transient Validation of a Variable Geometry Turbocharger for Mean-Value Modeling at Low and Medium Speed-Load Points , 2002 .

[44]  C. Winter,et al.  Solar Power Plants , 1991 .

[45]  Lars Eriksson,et al.  Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics , 2011 .

[46]  Rambod Rayegan,et al.  A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs) , 2011 .

[47]  D. Yogi Goswami,et al.  Principles of Solar Engineering , 1978 .

[48]  E. Torres-Reyes,et al.  Thermoeconomic Analysis at Optimal Performance of Non-isothermal Flat-Plate Solar Collectors , 2001 .

[49]  Eric B. Ratts,et al.  Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux , 2004 .

[50]  Sebastian-James Bode,et al.  OF OPTICAL SOFTWARE FOR USE IN CONCENTRATING SOLAR POWER SYSTEMS , 2012 .

[51]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[52]  Abraham Kribus,et al.  Experimental evaluation of a non-isothermal high temperature solar particle receiver , 2004 .

[53]  Adrian Bejan,et al.  Thermodynamic optimization of geometric structure in the counterflow heat exchanger for an environmental control system , 2001 .

[54]  Sendhil Kumar Natarajan,et al.  Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish , 2008 .

[55]  R. Petela Exergy of Heat Radiation , 1964 .

[56]  Martine Baelmans,et al.  Optimal recuperator design for use in a micro gas turbine , 2006 .

[57]  Ulrica Renberg 1D engine simulation of a turbocharged SI engine with CFD computation on components , 2008 .

[58]  E. Torres-Reyes,et al.  Thermodynamic optimization as an effective tool to design solar heating systems , 2004 .

[59]  S. C. Kaushik,et al.  Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP) , 2012 .

[60]  R. W. Harrigan,et al.  Solar energy fundamentals and design , 1985 .

[61]  A. Bejan,et al.  Entropy Generation Through Heat and Fluid Flow , 1983 .

[62]  Nathan P. Siegel,et al.  A Study of Solid Particle Flow Characterization in Solar Particle Receiver , 2009 .

[63]  N. Watson,et al.  Turbocharging the internal combustion engine , 1982 .

[64]  Alexis De Vos Thermodynamics of solar energy conversion , 2008 .

[65]  Martine Baelmans,et al.  Optimal pressure drop ratio for micro recuperators in small sized gas turbines , 2008 .

[66]  Barry Vaile Burrow The effect of recuperator geometry on regenerated Brayton cycle , 1969 .

[67]  Bor-Jang Tsai,et al.  A novel Swiss-Roll recuperator for the microturbine engine , 2009 .

[68]  Weilin Zhuge,et al.  Development of an advanced turbocharger simulation method for cycle simulation of turbocharged internal combustion engines , 2009 .

[69]  Jan Fokkens,et al.  Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle , 2008 .

[70]  Fengrui Sun,et al.  Power optimization of an endoreversible closed intercooled regenerated Brayton cycle , 2005 .

[71]  Charles E. Newman,et al.  Detailed Simulation of Turbocharged Engines with Modelica , 2008 .

[72]  Richard Edwin Sonntag,et al.  Fundamentals of Thermodynamics , 1998 .

[73]  A. Bejan Theory of heat transfer-irreversible power plants , 1988 .

[74]  Josua P. Meyer,et al.  Thermodynamic optimisation of the integrated design of a small‐scale solar thermal Brayton cycle , 2012 .

[75]  S. O. Onyegegbu,et al.  Transient multidimensional second law analysis of solar collectors subjected to time-varying insolation with diffuse components , 1993 .

[76]  J. E. Hesselgreaves Rationalisation of second law analysis of heat exchangers , 2000 .

[77]  Mehmet Yilmaz,et al.  Performance evaluation criteria for heat exchangers based on second law analysis , 2001 .

[78]  Adrian Bejan,et al.  Entropy generation minimization in parallel‐plates counterflow heat exchangers , 2000 .

[79]  Noor A. Ahmed,et al.  Effect of the Ratio of Specific Heats on a Small Scale Solar Brayton Cycle , 2012 .

[80]  Aldo Steinfeld,et al.  Optimum aperture size and operating temperature of a solar cavity-receiver , 1993 .

[81]  V. Zimparov,et al.  Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux , 2001 .

[82]  Markku Lampinen,et al.  Theory of Effective Heat-Absorbing and Heat-Emitting Temperatures in Entropy and Exergy Analysis with Applications to Flow Systems and Combustion Processes , 2006 .

[83]  Josua P. Meyer,et al.  Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints☆ , 2012 .

[84]  Ibrahim Dincer,et al.  How much exergy one can obtain from incident solar radiation , 2009 .

[85]  Paul Gauché,et al.  HYBRID PRESSURIZED AIR RECEIVER FOR THE SUNSPOT CYCLE , 2012 .

[86]  Zhen-Xiang Gong,et al.  Entropy Generation Minimization , 1996 .

[87]  Fengrui Sun,et al.  Performance of a regenerative Brayton heat engine , 1996 .

[88]  Lingen Chen,et al.  Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles , 2007 .

[89]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[90]  Terry G. Lenz,et al.  Thermal performance of solar concentrator/cavity receiver systems , 1985 .

[91]  H. Ishikawa,et al.  Optimisation of heat exchanger design in a thermoacoustic engine using a second law analysis , 1996 .

[92]  S. X. Chu,et al.  Analysis of terrestrial solar radiation exergy , 2009 .

[93]  Sendhil Kumar Natarajan,et al.  Comparison of receivers for solar dish collector system , 2008 .

[94]  Nurdil Eskin,et al.  Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results , 1999 .

[95]  Santiago Velasco,et al.  Optimum performance of a regenerative Brayton thermal cycle , 1997 .

[96]  J. Keenan Availability and irreversibility in thermodynamics , 1951 .

[97]  A. D. Catoira,et al.  Pressurized concentrated solar power receiver designed to operate with closed Brayton cycles , 2012 .

[98]  E. Torres-Reyes,et al.  A design method of flat-plate solar collectors based on minimum entropy generation , 2001 .

[99]  R. Martinez-Botas,et al.  An audit of aerodynamic loss in a double entry turbine under full and partial admission , 2012 .

[100]  R. K. Shah,et al.  Compact Heat Exchangers for Microturbines , 2005 .

[101]  M. Izquierdo Millán,et al.  Available solar exergy in an absorption cooling process , 1996 .

[102]  Sunil Sarangi,et al.  On the generation of entropy in a counterflow heat exchanger , 1982 .

[103]  Adrian Bejan Extraction of exergy from solar collectors under time-varying conditions , 1982 .

[104]  Serge Domenech,et al.  Exergy analysis for Generation IV nuclear plant optimization , 2009 .

[105]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[106]  Martine Baelmans,et al.  Requirements for recuperators in micro gas turbines , 2004 .

[107]  Karl Heinz Hoffmann,et al.  What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production? , 2001 .

[108]  Volker Hartkopf,et al.  Detailed Energy and Exergy Analysis for a Solar Lithium Bromide Absorption Chiller and a Conventional Electric Chiller (R134a) , 2011 .

[109]  Jincan Chen,et al.  Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation-convection heat losses , 2010 .

[110]  J. Cervantes,et al.  Experiments on a solar-assisted heat pump and an exergy analysis of the system , 2002 .

[111]  S. Karslı,et al.  Performance analysis of new-design solar air collectors for drying applications , 2007 .

[112]  Arif Hepbasli,et al.  A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future , 2008 .

[113]  M. J. Moran,et al.  Thermal design and optimization , 1995 .

[114]  Sendhil Kumar Natarajan,et al.  Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator , 2007 .

[115]  R. Petela Exergy of undiluted thermal radiation , 2003 .

[116]  H. Tan,et al.  Radiation performance of dish solar concentrator/cavity receiver systems , 2008 .

[117]  Yuting Wu,et al.  Dynamic Simulation of Closed Brayton Cycle Solar Thermal Power System , 2004 .

[118]  W. Chow,et al.  Solar radiation model , 2001 .

[119]  Fengrui Sun,et al.  Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities , 1997 .

[120]  Said Farahat,et al.  Exergetic optimization of flat plate solar collectors , 2009 .

[121]  J. G. Cervantes-de Gortari,et al.  Exergy analysis of a passive solar still , 2008 .

[122]  Adrian Bejan The Equivalence of Maximum Power and Minimum Entropy Generation Rate in the Optimization of Power Plants , 1996 .

[123]  Bengt Sundén,et al.  Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators , 2002 .

[124]  Andrés Agudelo,et al.  Thermal radiation and the second law , 2010 .

[125]  Colin F. McDonald Low-cost compact primary surface recuperator concept for microturbines , 2000 .

[126]  T. T. Veenstra,et al.  Optimization of counterflow heat exchanger geometry through minimization of entropy generation , 2005 .

[127]  Lino Guzzella,et al.  Introduction to Modeling and Control of Internal Combustion Engine Systems , 2004 .

[128]  Michael J. Barrett,et al.  System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems , 2004 .

[129]  Shireesh B. Kedare,et al.  Investigations on heat losses from a solar cavity receiver , 2009 .

[130]  A. Steinfeld,et al.  Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles , 2009 .

[131]  Alberto Traverso,et al.  Optimal design of compact recuperators for microturbine application , 2005 .

[132]  D. C. Agrawal,et al.  Solar luminous constant versus lunar luminous constant , 2010 .

[133]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[134]  Naser M. Jubeh,et al.  Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition , 2005, Entropy.

[135]  Rene Cornelissen,et al.  Exergetic optimisation of a heat exchanger , 1997 .

[136]  P. Landsberg,et al.  Thermodynamics of the conversion of diluted radiation , 1979 .

[137]  R. Ogulata,et al.  Irreversibility analysis of cross flow heat exchangers , 2000 .

[138]  Antonio Lecuona,et al.  Compressors driven by thermal solar energy: Entropy generated, exergy destroyed and exergetic efficiency , 2002 .