A stochastic behavioral model and a ‘Microscopic’ foundation of evolutionary game theory

A stochastic model is developed to describe behavioral changes by imitative pair interactions of individuals. ‘Microscopic’ assumptions on the specific form of the imitative processes lead to a stochastic version of the game dynamical equations, which means that the approximate mean value equations of these equations are the game dynamical equations of evolutionary game theory.The stochastic version of the game dynamical equations allows the derivation of covariance equations. These should always be solved along with the ordinary game dynamical equations. On the one hand, the average behavior is affected by the covariances so that the game dynamical equations must be corrected for increasing covariances; otherwise they may become invalid in the course of time. On the other hand, the covariances are a measure of the reliability of game dynamical descriptions. An increase of the covariances beyond a critical value indicates a phase transition, i.e. a sudden change in the properties of the social system under consideration.The applicability and use of the equations introduced are illustrated by computational results for the social self-organization of behavioral conventions.

[1]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[2]  P. Lugol Annalen der Physik , 1906 .

[3]  D. Helbing A Mathematical Model for the Behavior of Individuals in a Social Field , 1994, cond-mat/9805194.

[4]  H. Föllmer Random economies with many interacting agents , 1974 .

[5]  G. Haag,et al.  Towards a Dynamic Disequilibrium Theory of Economy , 1993 .

[6]  Christian V. Forst,et al.  Full characterization of a strange attractor: Chaotic dynamics in low-dimensional replicator system , 1991 .

[7]  Bernardo A. Huberman,et al.  Dynamics with expectations , 1992 .

[8]  Dirk Helbing Interrelations between stochastic equations for systems with pair interactions , 1992 .

[9]  Hermann Haken,et al.  Cooperative Phenomena in Systems far from Thermal Equilibrium , 1973 .

[10]  Wolfgang Weidlich,et al.  The master equation approach to nonlinear economics , 1992 .

[11]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[12]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[13]  Howard Raiffa,et al.  Games And Decisions , 1958 .

[14]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[15]  P. Schuster,et al.  Dynamical Systems Under Constant Organization II: Homogeneous Growth Functions of Degree $p = 2$ , 1980 .

[16]  D. North Competing Technologies , Increasing Returns , and Lock-In by Historical Events , 1994 .

[17]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[18]  W. Arthur,et al.  INCREASING RETURNS AND LOCK-IN BY HISTORICAL EVENTS , 1989 .

[19]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[20]  A. Orléan Contagion des opinions et fonctionnement des marchés financiers , 1992, Revue économique.

[21]  Wolfgang Weidlich,et al.  Physics and social science — The approach of synergetics , 1991 .

[22]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[23]  Richard Topol,et al.  Bubbles and Volatility of Stock Prices: Effect of Mimetic Contagion , 1991 .

[24]  W. Weidlich,et al.  THE STATISTICAL DESCRIPTION OF POLARIZATION PHENOMENA IN SOCIETY , 1971 .

[25]  Dirk Helbing,et al.  A mathematical model for the behavior of pedestrians , 1991, cond-mat/9805202.

[26]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[27]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[28]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[29]  K Sigmund,et al.  A note on evolutionary stable strategies and game dynamics. , 1979, Journal of theoretical biology.

[30]  W. Weidlich,et al.  Concepts and Models of a Quantitative Sociology , 1983 .

[31]  C. Waddington,et al.  Order through fluctuation : self-organization and social system , 1976 .

[32]  A. Rapoport,et al.  Prisoner's Dilemma: A Study in Conflict and Co-operation , 1970 .

[33]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[34]  D. McFadden,et al.  URBAN TRAVEL DEMAND - A BEHAVIORAL ANALYSIS , 1977 .

[35]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[36]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[37]  Dirk Helbing,et al.  A Mathematical Model for Attitude Formation By Pair Interactions , 1992, cond-mat/9805145.

[38]  The Master Equation Approach to Nonlinear Economics , 1992 .

[39]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[40]  J. J. Beggs,et al.  Urban travel demand , 1973 .

[41]  A. Rapoport,et al.  Prisoner's Dilemma , 1965 .