Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence

Smarter applications are making better use of the insights gleaned from data, having an impact on every industry and research discipline. At the core of this revolution lies the tools and the methods that are driving it, from processing the massive piles of data generated each day to learning from and taking useful action. Deep neural networks, along with advancements in classical ML and scalable general-purpose GPU computing, have become critical components of artificial intelligence, enabling many of these astounding breakthroughs and lowering the barrier to adoption. Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level libraries and clean high-level APIs. This survey offers insight into the field of machine learning with Python, taking a tour through important topics to identify some of the core hardware and software paradigms that have enabled it. We cover widely-used libraries and concepts, collected together for holistic comparison, with the goal of educating the reader and driving the field of Python machine learning forward.

[1]  Clément Farabet,et al.  Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.

[2]  Matthew Rocklin,et al.  Better and faster hyperparameter optimization with Dask , 2019 .

[3]  Amos J. Storkey,et al.  Data Augmentation Generative Adversarial Networks , 2017, ICLR 2018.

[4]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[5]  Kunle Olukotun,et al.  DAWNBench : An End-to-End Deep Learning Benchmark and Competition , 2017 .

[6]  Aleksander Madry,et al.  Exploring the Landscape of Spatial Robustness , 2017, ICML.

[7]  Dawn Xiaodong Song,et al.  Decision Boundary Analysis of Adversarial Examples , 2018, ICLR.

[8]  Chandan Singh,et al.  Interpretations are useful: penalizing explanations to align neural networks with prior knowledge , 2019, ICML.

[9]  Jin Song Dong,et al.  Silas: High Performance, Explainable and Verifiable Machine Learning , 2019, ArXiv.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Mani Srivastava,et al.  GenAttack: practical black-box attacks with gradient-free optimization , 2018, GECCO.

[12]  Somesh Jha,et al.  Objective Metrics and Gradient Descent Algorithms for Adversarial Examples in Machine Learning , 2017, ACSAC.

[13]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[14]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[15]  Qihang Lin,et al.  Model-Agnostic Linear Competitors - When Interpretable Models Compete and Collaborate with Black-Box Models , 2019, ArXiv.

[16]  Matthias Bethge,et al.  Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models , 2017, ICLR.

[17]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[18]  Patrick D. McDaniel,et al.  Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples , 2016, ArXiv.

[19]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[20]  A. F. Melik-Adamyan,et al.  Speeding up numerical calculations in Python , 2016 .

[21]  Bin Yu,et al.  Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs , 2018, ICLR.

[22]  Jonathon S. Hare,et al.  Torchbearer: A Model Fitting Library for PyTorch , 2018, ArXiv.

[23]  Michael Siebers,et al.  Enriching Visual with Verbal Explanations for Relational Concepts - Combining LIME with Aleph , 2019, PKDD/ECML Workshops.

[24]  David P. Anderson,et al.  SETI@home: an experiment in public-resource computing , 2002, CACM.

[25]  Swagath Venkataramani,et al.  PACT: Parameterized Clipping Activation for Quantized Neural Networks , 2018, ArXiv.

[26]  Ali Farhadi,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016, ECCV.

[27]  Aaron Klein,et al.  Efficient and Robust Automated Machine Learning , 2015, NIPS.

[28]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[29]  J. Demmel,et al.  Sun Microsystems , 1996 .

[30]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[31]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[32]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Ameet Talwalkar,et al.  MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..

[35]  Luca Maria Gambardella,et al.  Deep, Big, Simple Neural Nets for Handwritten Digit Recognition , 2010, Neural Computation.

[36]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[37]  W. Brendel,et al.  Foolbox: A Python toolbox to benchmark the robustness of machine learning models , 2017 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  Michael Backes,et al.  The Limitations of Model Uncertainty in Adversarial Settings , 2018, ArXiv.

[40]  Martin Wistuba,et al.  Adversarial Robustness Toolbox v1.0.0 , 2018, 1807.01069.

[41]  Andrew Slavin Ross,et al.  Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients , 2017, AAAI.

[42]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[43]  Liang Lin,et al.  SNAS: Stochastic Neural Architecture Search , 2018, ICLR.

[44]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[45]  Patrick D. McDaniel,et al.  Cleverhans V0.1: an Adversarial Machine Learning Library , 2016, ArXiv.

[46]  Li Chen,et al.  Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG Compression , 2017, ArXiv.

[47]  L. Shapley A Value for n-person Games , 1988 .

[48]  G. Hua,et al.  LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks , 2018, ECCV.

[49]  Silvio Savarese,et al.  Neural Task Graphs: Generalizing to Unseen Tasks From a Single Video Demonstration , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  S. Hido,et al.  CuPy : A NumPy-Compatible Library for NVIDIA GPU Calculations , 2017 .

[51]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[52]  Patrice Y. Simard,et al.  Using GPUs for machine learning algorithms , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[53]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[54]  S Gawley,et al.  Trends and analysis , 1998 .

[55]  Michael I. Jordan,et al.  HopSkipJumpAttack: A Query-Efficient Decision-Based Attack , 2019, 2020 IEEE Symposium on Security and Privacy (SP).

[56]  David Berthelot,et al.  Evaluation Methodology for Attacks Against Confidence Thresholding Models , 2018 .

[57]  Vishakh Hegde,et al.  Parallel and Distributed Deep Learning , 2016 .

[58]  Oriol Vinyals,et al.  Hierarchical Representations for Efficient Architecture Search , 2017, ICLR.

[59]  David J. Fleet,et al.  Adversarial Manipulation of Deep Representations , 2015, ICLR.

[60]  Sebastian Gehrmann,et al.  exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformers Models , 2019, ArXiv.

[61]  Yang Wang,et al.  Advbox: a toolbox to generate adversarial examples that fool neural networks , 2020, ArXiv.

[62]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[63]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[64]  George D. C. Cavalcanti,et al.  Dynamic classifier selection: Recent advances and perspectives , 2018, Inf. Fusion.

[65]  Yang Song,et al.  PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples , 2017, ICLR.

[66]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[67]  Yue Zhao,et al.  Combining Machine Learning Models using combo Library , 2020, AAAI.

[68]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[69]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[70]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[71]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[72]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[73]  Thomas G. Dietterich Learning at the knowledge level , 2004, Machine Learning.

[74]  Shenjian Chen,et al.  Message Passing Interface (MPI) , 2011, Encyclopedia of Parallel Computing.

[75]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[76]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[77]  Moustapha Cissé,et al.  Countering Adversarial Images using Input Transformations , 2018, ICLR.

[78]  D C CavalcantiGeorge,et al.  Dynamic classifier selection , 2018 .

[79]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[80]  Seyed-Mohsen Moosavi-Dezfooli,et al.  DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[82]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[83]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Masoud Mohseni,et al.  TensorFlow Quantum: A Software Framework for Quantum Machine Learning , 2020, ArXiv.

[85]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[86]  Torsten Hoefler,et al.  Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. , 2018 .

[87]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[88]  Alan L. Yuille,et al.  Mitigating adversarial effects through randomization , 2017, ICLR.

[89]  Kevin Duh,et al.  DyNet: The Dynamic Neural Network Toolkit , 2017, ArXiv.

[90]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[91]  Jan Eric Lenssen,et al.  Fast Graph Representation Learning with PyTorch Geometric , 2019, ArXiv.

[92]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[93]  Arvind Satyanarayan,et al.  Altair: Interactive Statistical Visualizations for Python , 2018, J. Open Source Softw..

[94]  Matthias Bethge,et al.  Foolbox v0.8.0: A Python toolbox to benchmark the robustness of machine learning models , 2017, ArXiv.

[95]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[96]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[97]  Samy Bengio,et al.  Adversarial Machine Learning at Scale , 2016, ICLR.

[98]  Alistair A. Young,et al.  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2017, MICCAI 2017.

[99]  Luiz Eduardo Soares de Oliveira,et al.  Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and Defenses , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[100]  Luca Maria Gambardella,et al.  Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition , 2010, ArXiv.

[101]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[102]  Atul Prakash,et al.  Robust Physical-World Attacks on Deep Learning Visual Classification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[103]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[104]  Timnit Gebru,et al.  Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification , 2018, FAT.

[105]  Giovanni S. Alberti,et al.  ADef: an Iterative Algorithm to Construct Adversarial Deformations , 2018, ICLR.

[106]  Benjamin Kaufman,et al.  Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition , 2020, Methods.

[107]  Michael Siebers,et al.  Explaining Black-Box Classifiers with ILP - Empowering LIME with Aleph to Approximate Non-linear Decisions with Relational Rules , 2018, ILP.

[108]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[109]  Tong Liu,et al.  The development of Mellanox/NVIDIA GPUDirect over InfiniBand—a new model for GPU to GPU communications , 2011, Computer Science - Research and Development.

[110]  Zheng Zhang,et al.  MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.

[111]  Shin Ishii,et al.  Distributional Smoothing with Virtual Adversarial Training , 2015, ICLR 2016.

[112]  Martín Abadi,et al.  Adversarial Patch , 2017, ArXiv.

[113]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[114]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[115]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[116]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[117]  Jin Song Dong,et al.  Towards Dependable and Explainable Machine Learning Using Automated Reasoning , 2018, ICFEM.

[118]  Neeraj Pradhan,et al.  Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro , 2019, ArXiv.

[119]  Kahlen Aymes,et al.  One Step Closer , 2016 .

[120]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[121]  Radha Poovendran,et al.  On the Limitation of Convolutional Neural Networks in Recognizing Negative Images , 2017, 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA).

[122]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[123]  Aaron Klein,et al.  Auto-sklearn: Efficient and Robust Automated Machine Learning , 2019, Automated Machine Learning.

[124]  Cho-Jui Hsieh,et al.  GPU-acceleration for Large-scale Tree Boosting , 2017, ArXiv.

[125]  Duen Horng Chau,et al.  Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[126]  Juntang Zhuang,et al.  Decision explanation and feature importance for invertible networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[127]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[128]  Hunter Scales,et al.  AltiVec Extension to PowerPC Accelerates Media Processing , 2000, IEEE Micro.

[129]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[130]  Kamyar Azizzadenesheli,et al.  signSGD with Majority Vote is Communication Efficient and Fault Tolerant , 2018, ICLR.

[131]  Dustin Tran,et al.  Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.

[132]  Quoc V. Le,et al.  Towards a Human-like Open-Domain Chatbot , 2020, ArXiv.

[133]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[134]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[135]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[136]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[137]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[138]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[139]  Yanjun Ma,et al.  PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .

[140]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[141]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[142]  Sean M. Law,et al.  STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining , 2019, J. Open Source Softw..

[143]  Lin Xu,et al.  Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights , 2017, ICLR.

[144]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[145]  Matthew Johnson,et al.  Compiling machine learning programs via high-level tracing , 2018 .

[146]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[147]  Vahid Mirjalili,et al.  Python machine learning : machine learning and deep learning with Python, scikit-learn, and TensorFlow , 2017 .

[148]  Yanjun Qi,et al.  Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks , 2017, NDSS.

[149]  Dan Boneh,et al.  Adversarial Training and Robustness for Multiple Perturbations , 2019, NeurIPS.

[150]  Silvia M. Nassar,et al.  Impact of an Extra Layer on the Stacking Algorithm for Classification Problems , 2018, J. Comput. Sci..

[151]  Sebastian Raschka,et al.  MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack , 2018, J. Open Source Softw..

[152]  Darshan Patil,et al.  Towards modular and programmable architecture search , 2019, NeurIPS.

[153]  Randal S. Olson,et al.  TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning , 2016, AutoML@ICML.

[154]  Joseph Sill,et al.  Feature-Weighted Linear Stacking , 2009, ArXiv.

[155]  Pushmeet Kohli,et al.  Adversarial Risk and the Dangers of Evaluating Against Weak Attacks , 2018, ICML.

[156]  Amit Agarwal,et al.  CNTK: Microsoft's Open-Source Deep-Learning Toolkit , 2016, KDD.

[157]  Matthias Bethge,et al.  Towards the first adversarially robust neural network model on MNIST , 2018, ICLR.

[158]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[159]  Yaser Sheikh,et al.  Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[160]  Dhabaleswar K. Panda,et al.  Efficient Inter-node MPI Communication Using GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs , 2013, 2013 42nd International Conference on Parallel Processing.

[161]  H. Brendan McMahan,et al.  A General Approach to Adding Differential Privacy to Iterative Training Procedures , 2018, ArXiv.

[162]  Xiaoyu Cao,et al.  Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification , 2017, ACSAC.

[163]  John F. Canny,et al.  T-SNE-CUDA: GPU-Accelerated T-SNE and its Applications to Modern Data , 2018, 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).

[164]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[165]  Gilles Louppe,et al.  Independent consultant , 2013 .

[166]  Li Fei-Fei,et al.  Progressive Neural Architecture Search , 2017, ECCV.

[167]  Sebastian Ruder,et al.  Universal Language Model Fine-tuning for Text Classification , 2018, ACL.

[168]  Sebastian Raschka,et al.  Naive Bayes and Text Classification I - Introduction and Theory , 2014, ArXiv.

[169]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[170]  Valentina Zantedeschi,et al.  Efficient Defenses Against Adversarial Attacks , 2017, AISec@CCS.

[171]  Samy Bengio,et al.  Adversarial examples in the physical world , 2016, ICLR.

[172]  Bernd Bischl,et al.  An Open Source AutoML Benchmark , 2019, ArXiv.

[173]  Qingquan Song,et al.  Auto-Keras: An Efficient Neural Architecture Search System , 2018, KDD.

[174]  Ting Wang,et al.  DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[175]  George Bosilca,et al.  UCX: An Open Source Framework for HPC Network APIs and Beyond , 2015, 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.

[176]  Jun Zhu,et al.  Boosting Adversarial Attacks with Momentum , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[177]  GhemawatSanjay,et al.  The Google file system , 2003 .

[178]  Bo Chen,et al.  Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[179]  Jacob Schreiber,et al.  Pomegranate: fast and flexible probabilistic modeling in python , 2017, J. Mach. Learn. Res..

[180]  Ian J. Goodfellow,et al.  Technical Report on the CleverHans v2.1.0 Adversarial Examples Library , 2016 .

[181]  Michael I. Jordan,et al.  CoCoA: A General Framework for Communication-Efficient Distributed Optimization , 2016, J. Mach. Learn. Res..

[182]  Jinfeng Yi,et al.  ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models , 2017, AISec@CCS.

[183]  Jinfeng Yi,et al.  EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples , 2017, AAAI.

[184]  Hesham El-Rewini,et al.  Message Passing Interface (MPI) , 2005 .

[185]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[186]  Benjamin Edwards,et al.  Adversarial Robustness Toolbox v0.2.2 , 2018, ArXiv.

[187]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[188]  Matthew Rocklin,et al.  Dask: Parallel Computation with Blocked algorithms and Task Scheduling , 2015, SciPy.

[189]  Dimitrios Sarigiannis,et al.  Snap ML: A Hierarchical Framework for Machine Learning , 2018, NeurIPS.

[190]  Colin Raffel,et al.  Thermometer Encoding: One Hot Way To Resist Adversarial Examples , 2018, ICLR.

[191]  Dan Boneh,et al.  Ensemble Adversarial Training: Attacks and Defenses , 2017, ICLR.

[192]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[193]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[194]  Nina Narodytska,et al.  Simple Black-Box Adversarial Perturbations for Deep Networks , 2016, ArXiv.

[195]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[196]  Kirthevasan Kandasamy,et al.  Neural Architecture Search with Bayesian Optimisation and Optimal Transport , 2018, NeurIPS.

[197]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[198]  Jack Dongarra,et al.  LAPACK: a portable linear algebra library for high-performance computers , 1990, SC.

[199]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[200]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[201]  María Rodríguez Martínez,et al.  MonoNet: Towards Interpretable Models by Learning Monotonic Features , 2019, ArXiv.

[202]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[203]  Ananthram Swami,et al.  Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks , 2015, 2016 IEEE Symposium on Security and Privacy (SP).

[204]  Demis Hassabis,et al.  Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , 2017, ArXiv.

[205]  Kenta Oono,et al.  Chainer : a Next-Generation Open Source Framework for Deep Learning , 2015 .

[206]  Sebastian Raschka,et al.  Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning , 2018, ArXiv.

[207]  Quoc V. Le,et al.  GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism , 2018, ArXiv.

[208]  Shuchang Zhou,et al.  DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients , 2016, ArXiv.

[209]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[210]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Universal Adversarial Perturbations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[211]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[212]  Ananthram Swami,et al.  The Limitations of Deep Learning in Adversarial Settings , 2015, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).

[213]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[214]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[215]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[216]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[217]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.