Nonsmooth H∞ synthesis

We develop nonsmooth optimization techniques to solve$H_infty$synthesis problems under additional structural constraints on the controller. Our approach avoids the use of Lyapunov variables and therefore leads to moderate size optimization programs even for very large systems. The proposed framework is versatile and can accommodate a number of challenging design problems including static, fixed-order, fixed-structure, decentralized control, design of PID controllers and simultaneous design and stabilization problems. Our algorithmic strategy uses generalized gradients and bundling techniques suited for the$H_infty$norm and other nonsmooth performance criteria. We compute descent directions by solving quadratic programs and generate steps via line search. Convergence to a critical point from an arbitrary starting point is proved and numerical tests are included to validate our methods. The proposed approach proves to be efficient even for systems with several hundreds of states.

[1]  Pierre Apkarian,et al.  Spectral bundle methods for non-convex maximum eigenvalue functions: second-order methods , 2005, Math. Program..

[2]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[3]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[4]  Pierre Apkarian,et al.  A Spectral Quadratic-SDP Method with Applications to Fixed-Order H2 and H∞ Synthesis , 2004, Eur. J. Control.

[5]  Pierre Apkarian,et al.  Nonsmooth Optimization for Multidisk Hoo Synthesis , 2006, Eur. J. Control.

[6]  H. Horisberger,et al.  Solution of the optimal constant output feedback problem by conjugate gradients , 1974 .

[7]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[8]  P. Apkarian,et al.  Fixed‐order H∞ control design via a partially augmented Lagrangian method , 2003 .

[9]  Pierre Apkarian,et al.  Controller Design via Nonsmooth Multidirectional Search , 2006, SIAM J. Control. Optim..

[10]  A. Lewis,et al.  Two numerical methods for optimizing matrix stability , 2002 .

[11]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[12]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[13]  Pierre Apkarian,et al.  Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods , 2005, Math. Program..

[14]  D. Gangsaas,et al.  Application of modem synthesis to aircraft control: Three case studies , 1986 .

[15]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[16]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[17]  Friedemann Leibfritz,et al.  An Interior Point Constrained Trust Region Method for a Special Class of Nonlinear Semidefinite Programming Problems , 2002, SIAM J. Optim..

[18]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[19]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[20]  J. Geromel,et al.  Numerical comparison of output feedback design methods , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[21]  D. K. Frederick,et al.  BENCHMARK PROBLEMS FOR COMPUTER-AIDED CONTROL SYSTEM DESIGN , 1989 .

[22]  Pierre Apkarian,et al.  Controller Design via Nonsmooth Multi-Directional Search , 2004 .

[23]  François Oustry,et al.  A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..

[24]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[25]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[26]  Lei Guo,et al.  Reduced-Order Controllers for Singular H∞ Control Problems Based on LMI , 1996 .

[27]  Ben M. Chen,et al.  A reduced order observer based controller design for H/sub /spl infin//-optimization , 1994 .

[28]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[29]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[30]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[31]  D. Noll,et al.  SPECTRAL BUNDLE METHODS FOR NON-CONVEX MAXIMUM EIGENVALUE FUNCTIONS. PART 1: FIRST-ORDER METHODS , 2005 .

[32]  Pierre Apkarian,et al.  Partially Augmented Lagrangian Method for Matrix Inequality Constraints , 2004, SIAM J. Optim..

[33]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[34]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[35]  D. Gangsaas,et al.  Application of Modern Synthesis to Aircraft Control : Three Case Studies , 2001 .

[36]  Ben M. Chen H Control and Its Applications , 1998 .

[37]  Vincent D. Blondel,et al.  Simultaneous stabilizability of three linear systems is rationally undecidable , 1993, Math. Control. Signals Syst..

[38]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[39]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[40]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[41]  S. Bhattacharyya,et al.  Robust control with structured perturbations , 1987, 26th IEEE Conference on Decision and Control.

[42]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[43]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[44]  Elijah Polak,et al.  On the rate of convergence of certain methods of centers , 1972, Math. Program..

[45]  Friedemann Leibfritz,et al.  Trust region methods for solving the optimal output feedback design problem , 2003, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[46]  Arkadi Nemirovski,et al.  Several NP-hard problems arising in robust stability analysis , 1993, Math. Control. Signals Syst..

[47]  P. Antsaklis,et al.  Reduced-order controllers for continuous and discrete-time singular H ∞ control problems based on LMI , 1996 .

[48]  C. Lemaréchal,et al.  Nonsmooth Algorithms to Solve Semidefinite Programs , 1999 .

[49]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[50]  F. Leibfritz COMPleib: COnstrained Matrix–optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems , 2006 .

[51]  Pierre Apkarian,et al.  Non Linear Spectral SDP Method for BMI-Constrained Problems: Applications to Control Design , 2004, ICINCO.

[52]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[53]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[54]  Xin Xin Reduced-order controllers for the Hinfinity control problem with unstable invariant zeros , 2004, Autom..

[55]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .