Prototype-based semantic consistency learning for unsupervised 2D image-based 3D shape retrieval

[1]  Jie Yang,et al.  Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[2]  Chen Qin,et al.  Semantic Concentration for Domain Adaptation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[3]  Qinghua Hu,et al.  T-SVDNet: Exploring High-Order Prototypical Correlations for Multi-Source Domain Adaptation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Nicu Sebe,et al.  Transformer-Based Source-Free Domain Adaptation , 2021, ArXiv.

[5]  Manmohan Chandraker,et al.  Instance Level Affinity-Based Transfer for Unsupervised Domain Adaptation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Kurt Keutzer,et al.  Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Dacheng Tao,et al.  Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning , 2020, NeurIPS.

[8]  An-An Liu,et al.  Semantic Consistency Guided Instance Feature Alignment for 2D Image-Based 3D Shape Retrieval , 2020, ACM Multimedia.

[9]  Yuqian Li,et al.  Joint Heterogeneous Feature Learning and Distribution Alignment for 2D Image-Based 3D Object Retrieval , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Yingli Tian,et al.  Cross-modal Center Loss , 2020, ArXiv.

[11]  Yuqian Li,et al.  Consistent Domain Structure Learning and Domain Alignment for 2D Image-Based 3D Objects Retrieval , 2020, IJCAI.

[12]  Wenhui Li,et al.  Hierarchical Instance Feature Alignment for 2D Image-Based 3D Shape Retrieval , 2020, IJCAI.

[13]  Chuan-Xian Ren,et al.  Enhanced Transport Distance for Unsupervised Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Qingming Huang,et al.  Gradually Vanishing Bridge for Adversarial Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[16]  Dapeng Chen,et al.  Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification , 2020, ICLR.

[17]  Weizhi Nie,et al.  Dual-level Embedding Alignment Network for 2D Image-Based 3D Object Retrieval , 2019, ACM Multimedia.

[18]  Yanjun Ma,et al.  PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .

[19]  Yi Yang,et al.  Contrastive Adaptation Network for Unsupervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Yi Yang,et al.  Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Philip S. Yu,et al.  Visual Domain Adaptation with Manifold Embedded Distribution Alignment , 2018, ACM Multimedia.

[22]  Chuan Chen,et al.  Learning Semantic Representations for Unsupervised Domain Adaptation , 2018, ICML.

[23]  Dong Xu,et al.  Collaborative and Adversarial Network for Unsupervised Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Jianmin Wang,et al.  Multi-Adversarial Domain Adaptation , 2018, AAAI.

[25]  Jiajun Wu,et al.  Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Tatsuya Harada,et al.  Maximum Classifier Discrepancy for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Vittorio Murino,et al.  Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation , 2017, ICLR.

[28]  Daniel Cremers,et al.  Associative Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Michael I. Jordan,et al.  Conditional Adversarial Domain Adaptation , 2017, NeurIPS.

[30]  Jing Zhang,et al.  Joint Geometrical and Statistical Alignment for Visual Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Qilong Wang,et al.  Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Carlos D. Castillo,et al.  Generate to Adapt: Aligning Domains Using Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[36]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[37]  Michael I. Jordan,et al.  Deep Transfer Learning with Joint Adaptation Networks , 2016, ICML.

[38]  Leonidas J. Guibas,et al.  Joint embeddings of shapes and images via CNN image purification , 2015, ACM Trans. Graph..

[39]  Bryan C. Russell,et al.  Understanding Deep Features with Computer-Generated Imagery , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[40]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[41]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[42]  Philip S. Yu,et al.  Transfer Feature Learning with Joint Distribution Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Rama Chellappa,et al.  Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[45]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[47]  Deepak S. Turaga,et al.  Cross domain distribution adaptation via kernel mapping , 2009, KDD.

[48]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[49]  Silvio Savarese,et al.  Learning Transferrable Representations for Unsupervised Domain Adaptation , 2016, NIPS.

[50]  Mehrtash Tafazzoli Harandi,et al.  Distribution-Matching Embedding for Visual Domain Adaptation , 2016, J. Mach. Learn. Res..

[51]  SalzmannMathieu,et al.  Distribution-matching embedding for visual domain adaptation , 2016 .