Ancestral gene synteny reconstruction improves extant species scaffolding
暂无分享,去创建一个
Annie Chateau | Cedric Chauve | Vincent Berry | Sèverine Bérard | Eric Tannier | Yoann Anselmetti | V. Berry | C. Chauve | S. Bérard | É. Tannier | A. Chateau | Y. Anselmetti | Cédric Chauve | Éric Tannier | Sèverine Bérard
[1] Esko Ukkonen,et al. Fast scaffolding with small independent mixed integer programs , 2011, Bioinform..
[2] Jian Ma,et al. DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications , 2008, J. Comput. Biol..
[3] Jens Stoye,et al. Phylogenetic comparative assembly , 2009, Algorithms for Molecular Biology.
[4] Yann Ponty,et al. Assessing the Robustness of Parsimonious Predictions for Gene Neighborhoods from Reconciled Phylogenies: Supplementary Material , 2015, ISBRA.
[5] Jose Lugo-Martinez,et al. Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies , 2014, PLoS Comput. Biol..
[6] Martin Strauch,et al. Reconstructing Tumor Genome Architectures , 2022 .
[7] Ján Manuch,et al. Linearization of ancestral multichromosomal genomes , 2012, BMC Bioinformatics.
[8] Alessandro Vullo,et al. Ensembl 2015 , 2014, Nucleic Acids Res..
[9] Genome evolution aware gene trees , 2015 .
[10] Cédric Chauve,et al. Joint Inference of Genome Structure and Content in Heterogeneous Tumor Samples , 2015, RECOMB.
[11] Jian Ma. A probabilistic framework for inferring ancestral genomic orders , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
[12] Sergey Koren,et al. Bambus 2: scaffolding metagenomes , 2011, Bioinform..
[13] Nikos Kyrpides,et al. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification , 2014, Nucleic Acids Res..
[14] Wing-Kin Sung,et al. Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences , 2011, RECOMB.
[15] M. Berriman,et al. A comprehensive evaluation of assembly scaffolding tools , 2014, Genome Biology.
[16] Christopher J. R. Illingworth,et al. High-Definition Reconstruction of Clonal Composition in Cancer , 2014, Cell reports.
[17] Jian Wang,et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.
[18] Gergely J. Szöllosi,et al. Evolution of gene neighborhoods within reconciled phylogenies , 2012, Bioinform..
[19] Walter Pirovano,et al. BIOINFORMATICS APPLICATIONS , 2022 .
[20] Shinya Honda,et al. Convergent evolution in structural elements of proteins investigated using cross profile analysis , 2012, BMC Bioinformatics.
[21] Krister M. Swenson,et al. Phylogenetic Reconstruction from Complete Gene Orders of Whole Genomes , 2008, APBC.
[22] Loretta Auvil,et al. Reference-assisted chromosome assembly , 2013, Proceedings of the National Academy of Sciences.
[23] Cédric Chauve,et al. A Methodological Framework for the Reconstruction of Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes , 2008, PLoS Comput. Biol..
[24] C. Pál,et al. The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.
[25] Yu Lin,et al. MLGO: phylogeny reconstruction and ancestral inference from gene-order data , 2014, BMC Bioinformatics.
[26] Pavel A Pevzner,et al. What is the difference between the breakpoint graph and the de Bruijn graph? , 2014, BMC Genomics.
[27] Arek Kasprzyk,et al. BioMart: driving a paradigm change in biological data management , 2011, Database J. Biol. Databases Curation.
[28] Marcel J. T. Reinders,et al. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies , 2012, Bioinform..
[29] Max A. Alekseyev,et al. Scaffold assembly based on genome rearrangement analysis , 2015, Comput. Biol. Chem..
[30] P. Pevzner,et al. Breakpoint graphs and ancestral genome reconstructions. , 2009, Genome research.
[31] References , 1971 .
[32] ergey Aganezovb,et al. caffold assembly based on genome rearrangement analysis , 2015 .
[33] Steven J. M. Jones,et al. Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .
[34] Cedric Chauve,et al. Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach , 2015, bioRxiv.
[35] R. Durbin,et al. Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.
[36] N. El-Mabrouk,et al. Efficient gene tree correction guided by species and synteny evolution , 2015 .
[37] G. Hong,et al. Nucleic Acids Research , 2015, Nucleic Acids Research.
[38] M. Gouy,et al. Genome-scale coestimation of species and gene trees , 2013, Genome research.
[39] Cédric Chauve,et al. FPSAC: fast phylogenetic scaffolding of ancient contigs , 2013, Bioinform..
[40] Priscila Biller,et al. Moments of genome evolution by Double Cut-and-Join , 2015, BMC Bioinformatics.
[42] David Sankoff,et al. On the PATHGROUPS approach to rapid small phylogeny , 2011, BMC Bioinformatics.
[43] Brian J. Raney,et al. Ragout—a reference-assisted assembly tool for bacterial genomes , 2014, Bioinform..