Chapter 3 – Spatial Vision

Publisher Summary The topic of spatial vision concerns the fundamental mechanisms within the eye and the brain that analyze and represent the distribution of light across the visual field with the ultimate goal of understanding how these mechanisms contribute to object recognition and scene interpretation in general. A wealth of psychophysical and physiological research supports the view that stimulus selectivity plays a fundamental role in spatial vision. Psychophysical studies have provided evidence that the human visual system is selective along a number of stimulus dimensions including orientation, size, position, wavelength, speed of motion, direction of motion, and binocular disparity. These studies have shown that there are mechanisms selective to different regions along each of these stimulus dimensions. Similarly, neurophysiological and anatomical studies have demonstrated that neurons in the visual pathway are selective along a number of stimulus dimensions, and that this selectivity increases from the retina to the primary visual cortex. This chapter relies upon a wealth of psychophysical and physiological research to develop the topic of spatial vision with two themes in mind.

[1]  J. L. Schnapf,et al.  5 – THE CONTROL OF VISUAL SENSITIVITY: Receptoral and Postreceptoral Processes , 1990 .

[2]  Y. L. Grand,et al.  Optics of the Eye , 1980 .

[3]  D. G. Albrecht Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions , 1995, Visual Neuroscience.

[4]  Floyd Ratliff,et al.  Studies on Excitation and Inhibition in the Retina , 1975 .

[5]  H. Barlow,et al.  Human contrast discrimination and the threshold of cortical neurons. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[6]  J. P. Thomas,et al.  Contrast gain control and fine spatial discriminations. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  B. B. Lee,et al.  Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation. , 1983, Journal of neurophysiology.

[8]  Andrew Parker,et al.  Detection and discrimination mechanisms in the striate cortex of Old World monkeys , 1990 .

[9]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[10]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[11]  Ma Ke Quantitative analysis of retinal ganglion cells with colour pellet analysis system software , 2002 .

[12]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[13]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[14]  O. Mimura [Eye movements]. , 1992, Nippon Ganka Gakkai zasshi.

[15]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[16]  Andrew B. Watson,et al.  Detection and Recognition of Simple Spatial Forms , 1983 .

[17]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[18]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[19]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[20]  Konstantin Bogdanov,et al.  Optics of the Eye , 2000 .

[21]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[22]  D. Hood,et al.  Lower-level visual processing and models of light adaptation. , 1998, Annual review of psychology.

[23]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[24]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[25]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[26]  S J Anderson,et al.  Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[27]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[28]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[30]  H. Wilson,et al.  Modified line-element theory for spatial-frequency and width discrimination. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[31]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[32]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[33]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Proceedings of 1st International Conference on Image Processing.

[35]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[36]  J. Kelsey Studies on Excitation and Inhibition in the Retina , 1976 .

[37]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[38]  Karen K. De Valois Spatial vision based upon color differences , 1994 .

[39]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[40]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.

[41]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[42]  H. Barlow Critical limiting factors in the design of the eye and visual cortex , 1981 .

[43]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[44]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[45]  K. Purpura,et al.  Response variability in retinal ganglion cells of primates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Wandell Computational neuroimaging of human visual cortex. , 1999, Annual review of neuroscience.

[47]  M. Sanders Handbook of Sensory Physiology , 1975 .

[48]  Wilson S. Geisler,et al.  Visual cortex neurons in monkey and cat: contrast response nonlinearities and stimulus selectivity , 1994, Other Conferences.

[49]  David S. Brée,et al.  Linking Propositions , 1986, COLING.

[50]  R. Shapley,et al.  Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells , 1990, Visual Neuroscience.

[51]  W S Geisler,et al.  Physical limits of acuity and hyperacuity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[52]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[53]  A. Derrington,et al.  Some observations on the masking effects of two-dimensional stimuli , 1989, Vision Research.

[54]  A. Leventhal The neural basis of visual function , 1991 .

[55]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[56]  R. W. Rodieck The First Steps in Seeing , 1998 .

[57]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[58]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[59]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[60]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[61]  Geoffrey M. Boynton,et al.  New model of human luminance pattern vision mechanisms: analysis of the effects of pattern orientation, spatial phase, and temporal frequency , 1994, Other Conferences.

[62]  D. G. Albrecht,et al.  Bayesian analysis of identification performance in monkey visual cortex: Nonlinear mechanisms and stimulus certainty , 1995, Vision Research.

[63]  S. A. Talbot Physiology of the retina and the visual pathway , 1961 .

[64]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[65]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[66]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[67]  D. Brainard,et al.  Efficiency in detection of isoluminant and isochromatic interference fringes. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[68]  A. Pantle,et al.  Physiological Basis of Motion Perception , 1978 .

[69]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[70]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[71]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[72]  D. Dacey,et al.  This paper was presented at a colloquium entitled ‘ ‘ Vision : From Photon to Perception , ’ ’ organized by , 1998 .

[73]  Frank Sengpiel,et al.  PII: S0042-6989(97)00413-6 , 1998 .

[74]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[75]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[76]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[77]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[78]  G. Westheimer,et al.  Light distribution in the image formed by the living human eye. , 1962, Journal of the Optical Society of America.

[79]  D. Pelli The quantum efficiency of vision , 1990 .

[80]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[81]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[82]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[83]  Wilson S. Geisler,et al.  Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model , 1996, Photonics West.

[84]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[85]  Lawrence E. Arend,et al.  Temporal determinants of the form of the spatial contrast threshold MTF , 1976, Vision Research.

[86]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[87]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[88]  I Abramov,et al.  Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. , 1967, Journal of neurophysiology.

[89]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[90]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[91]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[92]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[93]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[94]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[95]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[96]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[97]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[98]  Wilson S. Geisler,et al.  DISCRIMINATION INFORMATION IN NATURAL RADIANCE SPECTRA , 1995 .

[99]  H. Wilson,et al.  Spatial frequency adaptation and contrast gain control , 1993, Vision Research.

[100]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[101]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[102]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[103]  A Bradley,et al.  Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[104]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[105]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[106]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[107]  D. G. Albrecht,et al.  Periodicity of striate-cortex-cell receptive fields. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[108]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[109]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[110]  D. Teller Linking propositions , 1984, Vision Research.

[111]  J. Robson,et al.  Grating summation in fovea and periphery , 1978, Vision Research.

[112]  Hugh R. Wilson,et al.  10 – THE PERCEPTION OF FORM: Retina to Striate Cortex , 1989 .

[113]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[114]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[115]  J. M. Foley,et al.  Contrast detection and near-threshold discrimination in human vision , 1981, Vision Research.

[116]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[117]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[118]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[119]  E. DeYoe,et al.  Concurrent processing in the primate visual cortex. , 1995 .

[120]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[121]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[122]  S S Saunders,et al.  Discrimination performance of single neurons: rate and temporal-pattern information. , 1991, Journal of neurophysiology.

[123]  Janette Atkinson,et al.  Channels in Vision: Basic Aspects , 1978 .

[124]  H. Barlow The neuron doctrine in perception. , 1995 .

[125]  N. Graham Visual Pattern Analyzers , 1989 .

[126]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.