Combinatorics and geometry of transportation polytopes: An update

A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.

[1]  Ramayya Krishnan,et al.  Disclosure Limitation Methods and Information Loss for Tabular Data , 2001 .

[2]  Igor Pak,et al.  On the Number of Faces of Certain Transportation Polytopes , 2000, Eur. J. Comb..

[3]  Peter Gritzmann,et al.  On Stability, Error Correction, and Noise Compensation in Discrete Tomography , 2006, SIAM J. Discret. Math..

[4]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[5]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .

[6]  J. D. Loera The many aspects of counting lattice points in polytopes , 2005 .

[7]  Christian Haase,et al.  On permutation polytopes , 2007, 0709.1615.

[8]  Mark Jerrum,et al.  Three-Dimensional Statistical Data Security Problems , 1994, SIAM J. Comput..

[9]  Leen Stougie,et al.  A Linear Bound On The Diameter Of The Transportation Polytope* , 2006, Comb..

[10]  Bernd Gärtner,et al.  Understanding and Using Linear Programming (Universitext) , 2006 .

[11]  Jesús A. De Loera,et al.  Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..

[12]  Milan Vlach,et al.  Conditions for the existence of solutions of the three-dimensional planar transportation problem , 1986, Discret. Appl. Math..

[13]  Enide Andrade Martins,et al.  The diameter of the acyclic Birkhoff polytope , 2008 .

[14]  Peter Gritzmann,et al.  Successive Determination and Verification of Polytopes by their X-Rays , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[15]  W. Junginger Mehrdimensionale Transportprobleme vom Planar-Typ , 1976 .

[16]  Michel Balinski,et al.  Signature classes of transportation polytopes , 1993, Math. Program..

[17]  Friedrich Eisenbrand,et al.  On Sub-determinants and the Diameter of Polyhedra , 2014, Discret. Comput. Geom..

[18]  Ethan D. Bolker,et al.  Simplicial geometry and transportation polytopes , 1976 .

[19]  Joachim von Below,et al.  Even and odd diagonals in doubly stochastic matrices , 2008, Discret. Math..

[20]  Moshe Cohen,et al.  The Number of “Magic” Squares, Cubes, and Hypercubes , 2003, Am. Math. Mon..

[21]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[22]  Maya Mohsin Ahmed,et al.  Polytopes of Magic Labelings of Graphs and the Faces of the Birkhoff Polytope , 2008 .

[23]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[24]  Jesús A. De Loera,et al.  N-fold integer programming , 2006, Discret. Optim..

[25]  Richard A. Brualdi Convex polytopes of permutation invariant doubly stochastic matrices , 1977, J. Comb. Theory, Ser. B.

[26]  Richard A. Brualdi,et al.  Convex polyhedra of doubly stochastic matrices: II. Graph of Omegan , 1977, J. Comb. Theory, Ser. B.

[27]  Jack E. Graver,et al.  On the foundations of linear and integer linear programming I , 1975, Math. Program..

[28]  R. Gomory,et al.  A Primal Method for the Assignment and Transportation Problems , 1964 .

[29]  Sariel Har-Peled,et al.  Random Walks , 2021, Encyclopedia of Social Network Analysis and Mining.

[30]  David P. Robbins,et al.  On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..

[31]  Nathan Linial,et al.  On the Vertices of the d-Dimensional Birkhoff Polytope , 2012, Discret. Comput. Geom..

[32]  Peter Gritzmann,et al.  On the computational complexity of reconstructing lattice sets from their X-rays , 1999, Discret. Math..

[33]  L. Cox On properties of multi-dimensional statistical tables , 2003 .

[34]  L. Mirsky,et al.  Even doubly-stochastic matrices , 1961 .

[35]  Jesús A. De Loera,et al.  All Linear and Integer Programs Are Slim 3-Way Transportation Programs , 2006, SIAM J. Optim..

[36]  Carlos M. da Fonseca,et al.  Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope , 2008, Discret. Math..

[37]  François Bourgeois,et al.  An extension of the Munkres algorithm for the assignment problem to rectangular matrices , 1971, CACM.

[38]  Editors , 1986, Brain Research Bulletin.

[39]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[40]  R. Weismantel,et al.  Convex integer maximization via Graver bases , 2006 .

[41]  D. J. Hartfiel,et al.  Full patterns in truncated transportation polytopes , 1991 .

[42]  K. B. Haley,et al.  The Existence of a Solution to the Multi-Index Problem , 1965 .

[43]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[44]  L. Kantorovich On the Translocation of Masses , 2006 .

[45]  Jesús A. De Loera,et al.  Algebraic and Geometric Ideas in the Theory of Discrete Optimization , 2012, MOS-SIAM Series on Optimization.

[46]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[47]  L. Carlitz,et al.  Enumeration of symmetric arrays , 1966 .

[48]  R. Yoshida,et al.  A generating function for all semi-magic squares and the volume of the Birkhoff polytope , 2009 .

[49]  M. Vlach,et al.  Letter to the Editor - On the Necessary Conditions for the Existence of the Solution of the Multi-Index Transportation Problem , 1967, Oper. Res..

[50]  Martin E. Dyer,et al.  Planar 3DM is NP-Complete , 1986, J. Algorithms.

[51]  Francisco Santos,et al.  A counterexample to the Hirsch conjecture , 2010, ArXiv.

[52]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[53]  Doron Zeilberger The Ehrhart polynomial of the Birkhoff polytope , 2004 .

[54]  Richard P. Stanley,et al.  Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .

[55]  Sven de Vries,et al.  Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography , 1998, Int. J. Imaging Syst. Technol..

[56]  Michel Balinski,et al.  The Stable Allocation (or Ordinal Transportation) Problem , 2002, Math. Oper. Res..

[57]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[58]  V. Rich Personal communication , 1989, Nature.

[59]  Maya Mohsin Ahmed,et al.  Algebraic Combinatorics of Magic Squares , 2004 .

[60]  Soojin Cho,et al.  CONVEX POLYTOPES OF GENERALIZED DOUBLY STOCHASTIC MATRICES , 2001 .

[61]  Nitin R. Patel,et al.  A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables , 1983 .

[62]  S E Fienberg,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Bounds for cell entries in contingency tables given marginal totals and decomposable graphs , 2000 .

[63]  Mohamed Omar,et al.  On Volumes of Permutation Polytopes , 2013 .

[64]  Geir Dahl,et al.  Tridiagonal doubly stochastic matrices , 2004 .

[65]  Raymond Hemmecke,et al.  ON THE COMPUTATION OF HILBERT BASES OF CONES , 2002 .

[66]  G. Ziegler Lectures on Polytopes , 1994 .

[67]  Fu Liu Perturbation of transportation polytopes , 2013, J. Comb. Theory, Ser. A.

[68]  V. Klee,et al.  FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .

[69]  Martin E. Dyer,et al.  Sampling contingency tables , 1997 .

[70]  Lawrence H. Cox,et al.  Bounds on Entries in 3-Dimensional Contingency Tables Subject to Given Marginal Totals , 2002, Inference Control in Statistical Databases.

[71]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[72]  S. Onn Nonlinear Discrete Optimization , 2010 .

[73]  Joachim von Below On a theorem of L. Mirsky on even doubly-stochastic matrices , 1985, Discret. Math..

[74]  S. Sullivant,et al.  Sequential importance sampling for multiway tables , 2006, math/0605615.

[75]  Martin E. Dyer,et al.  Random walks on the vertices of transportation polytopes with constant number of sources , 2008 .

[76]  T. Koopmans Optimum Utilization of the Transportation System , 1949 .

[77]  Sven de Vries,et al.  On the reconstruction of binary and permutation matrices under (binary) tomographic constraints , 2008, Theor. Comput. Sci..

[78]  Steffen Borgwardt,et al.  On the diameter of partition polytopes and vertex-disjoint cycle cover , 2013, Math. Program..

[79]  Peter Gritzmann,et al.  On the index of Siegel grids and its application to the tomography of quasicrystals , 2008, Eur. J. Comb..

[80]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[81]  David Perkinson,et al.  Some facets of the polytope of even permutation matrices , 2004 .

[82]  William H. Cunningham,et al.  On the even permutation polytope , 2004 .

[83]  A. Barvinok A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .

[84]  L. Stougie A polynomial bound on the diameter of the transportation polytope , 2002 .

[85]  Bernd Gärtner,et al.  Understanding and using linear programming , 2007, Universitext.

[86]  Ruriko Yoshida,et al.  Estimating the number of zero-one multi-way tables via sequential importance sampling , 2011 .

[87]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[88]  Persi Diaconis,et al.  Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..

[89]  Alan Hoffman,et al.  What the transportation problem did for me , 2007, Ann. Oper. Res..

[90]  Jesús A. De Loera,et al.  Graphs of transportation polytopes , 2007, J. Comb. Theory, Ser. A.

[91]  Leen Stougie,et al.  A quadratic bound on the diameter of the transportation polytope , 2002 .

[92]  N. Tomizawa,et al.  On some techniques useful for solution of transportation network problems , 1971, Networks.

[93]  Ernesto Vallejo,et al.  Kronecker products and the RSK correspondence , 2010, Discret. Math..

[94]  Enide Andrade Martins,et al.  Face counting on an Acyclic Birkhoff polytope , 2009 .

[95]  Richard A. Brualdi,et al.  Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function , 1977, J. Comb. Theory A.

[96]  Alexander Barvinok,et al.  Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes , 2007, 0709.3810.

[97]  Brendan D. McKay,et al.  The asymptotic volume of the Birkhoff polytope , 2007, 0705.2422.

[98]  Igor Pak,et al.  Four Questions on Birkhoff Polytope , 2000 .

[99]  Peter Gritzmann,et al.  Discrete Tomography: Determination of Finite Sets by X-Rays , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[100]  E. Klafszky,et al.  Variants of the Hungarian method for solving linear programming problems , 1989 .

[101]  Graham Smith,et al.  Technical Note - Further Necessary Conditions for the Existence of a Solution to the Multi-Index Problem , 1973, Oper. Res..

[102]  K. Haley The Multi-Index Problem , 1963 .

[103]  Igor Pak,et al.  Hook length formula and geometric combinatorics. , 2001 .

[104]  Ramayya Krishnan,et al.  Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators , 1999 .

[105]  O. Bolotina,et al.  On stability of the , 2003 .

[106]  Geir Dahl,et al.  Transportation matrices with staircase patterns and majorization , 2008 .

[107]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[108]  Louis J. Billera,et al.  The Combinatorics of Permutation Polytopes , 1994, Formal Power Series and Algebraic Combinatorics.

[109]  Richard P. Stanley,et al.  Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings , 1976 .

[110]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[111]  H. W. Kuhn B R Y N Mawr College Variants of the Hungarian Method for Assignment Problems' , 1955 .

[112]  Jane Zundel MATCHING THEORY , 2011 .

[113]  Rushmir Mahmutćehajić Paths , 2014, The Science of Play.

[114]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[115]  M. L. Balinski,et al.  The Hirsch Conjecture for Dual Transportation Polyhedra , 1984, Math. Oper. Res..

[116]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[117]  Andreas Alpers,et al.  The two-dimensional Prouhet-Tarry-Escott problem , 2007 .

[118]  Yves Crama,et al.  Approximation algorithms for three-dimensional assignment problems with triangle inequalities , 1992 .

[119]  Shmuel Onn,et al.  Geometry, Complexity, and Combinatorics of Permutation Polytopes , 1993, J. Comb. Theory A.

[120]  Raymond Hemmecke,et al.  A polynomial oracle-time algorithm for convex integer minimization , 2007, Math. Program..

[121]  Jesús A. De Loera,et al.  The Complexity of Three-Way Statistical Tables , 2002, SIAM J. Comput..

[122]  Bolian Liu,et al.  The polytope of even doubly stochastic matrices , 1991, J. Comb. Theory, Ser. A.

[123]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[124]  D. Cvetkovic,et al.  A Combinatorial Approach to Matrix Theory and Its Applications , 2008 .

[125]  Martin E. Dyer,et al.  Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.

[126]  Jesús A. De Loera,et al.  Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable , 2012, Math. Oper. Res..

[127]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[128]  K. B. Haley,et al.  Letter to the Editor - Note on the Letter by Morávek and Vlach , 1967, Oper. Res..

[129]  Yuguo Chen,et al.  Conditional Inference on Tables With Structural Zeros , 2007 .

[130]  PETER GRITZMANN,et al.  Uniqueness in Discrete Tomography: Three Remarks and a Corollary , 2011, SIAM J. Discret. Math..

[131]  Sven de Vries,et al.  Approximating Binary Images from Discrete X-Rays , 2000, SIAM J. Optim..

[132]  Frits C. R. Spieksma,et al.  Multi-index Transportation Problems , 2009, Encyclopedia of Optimization.

[133]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .