Combinatorics and geometry of transportation polytopes: An update
暂无分享,去创建一个
[1] Ramayya Krishnan,et al. Disclosure Limitation Methods and Information Loss for Tabular Data , 2001 .
[2] Igor Pak,et al. On the Number of Faces of Certain Transportation Polytopes , 2000, Eur. J. Comb..
[3] Peter Gritzmann,et al. On Stability, Error Correction, and Noise Compensation in Discrete Tomography , 2006, SIAM J. Discret. Math..
[4] P. Diaconis,et al. Rectangular Arrays with Fixed Margins , 1995 .
[5] Leslie Hogben,et al. Combinatorial Matrix Theory , 2013 .
[6] J. D. Loera. The many aspects of counting lattice points in polytopes , 2005 .
[7] Christian Haase,et al. On permutation polytopes , 2007, 0709.1615.
[8] Mark Jerrum,et al. Three-Dimensional Statistical Data Security Problems , 1994, SIAM J. Comput..
[9] Leen Stougie,et al. A Linear Bound On The Diameter Of The Transportation Polytope* , 2006, Comb..
[10] Bernd Gärtner,et al. Understanding and Using Linear Programming (Universitext) , 2006 .
[11] Jesús A. De Loera,et al. Markov bases of three-way tables are arbitrarily complicated , 2006, J. Symb. Comput..
[12] Milan Vlach,et al. Conditions for the existence of solutions of the three-dimensional planar transportation problem , 1986, Discret. Appl. Math..
[13] Enide Andrade Martins,et al. The diameter of the acyclic Birkhoff polytope , 2008 .
[14] Peter Gritzmann,et al. Successive Determination and Verification of Polytopes by their X-Rays , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[15] W. Junginger. Mehrdimensionale Transportprobleme vom Planar-Typ , 1976 .
[16] Michel Balinski,et al. Signature classes of transportation polytopes , 1993, Math. Program..
[17] Friedrich Eisenbrand,et al. On Sub-determinants and the Diameter of Polyhedra , 2014, Discret. Comput. Geom..
[18] Ethan D. Bolker,et al. Simplicial geometry and transportation polytopes , 1976 .
[19] Joachim von Below,et al. Even and odd diagonals in doubly stochastic matrices , 2008, Discret. Math..
[20] Moshe Cohen,et al. The Number of “Magic” Squares, Cubes, and Hypercubes , 2003, Am. Math. Mon..
[21] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[22] Maya Mohsin Ahmed,et al. Polytopes of Magic Labelings of Graphs and the Faces of the Birkhoff Polytope , 2008 .
[23] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[24] Jesús A. De Loera,et al. N-fold integer programming , 2006, Discret. Optim..
[25] Richard A. Brualdi. Convex polytopes of permutation invariant doubly stochastic matrices , 1977, J. Comb. Theory, Ser. B.
[26] Richard A. Brualdi,et al. Convex polyhedra of doubly stochastic matrices: II. Graph of Omegan , 1977, J. Comb. Theory, Ser. B.
[27] Jack E. Graver,et al. On the foundations of linear and integer linear programming I , 1975, Math. Program..
[28] R. Gomory,et al. A Primal Method for the Assignment and Transportation Problems , 1964 .
[29] Sariel Har-Peled,et al. Random Walks , 2021, Encyclopedia of Social Network Analysis and Mining.
[30] David P. Robbins,et al. On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..
[31] Nathan Linial,et al. On the Vertices of the d-Dimensional Birkhoff Polytope , 2012, Discret. Comput. Geom..
[32] Peter Gritzmann,et al. On the computational complexity of reconstructing lattice sets from their X-rays , 1999, Discret. Math..
[33] L. Cox. On properties of multi-dimensional statistical tables , 2003 .
[34] L. Mirsky,et al. Even doubly-stochastic matrices , 1961 .
[35] Jesús A. De Loera,et al. All Linear and Integer Programs Are Slim 3-Way Transportation Programs , 2006, SIAM J. Optim..
[36] Carlos M. da Fonseca,et al. Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope , 2008, Discret. Math..
[37] François Bourgeois,et al. An extension of the Munkres algorithm for the assignment problem to rectangular matrices , 1971, CACM.
[38] Editors , 1986, Brain Research Bulletin.
[39] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[40] R. Weismantel,et al. Convex integer maximization via Graver bases , 2006 .
[41] D. J. Hartfiel,et al. Full patterns in truncated transportation polytopes , 1991 .
[42] K. B. Haley,et al. The Existence of a Solution to the Multi-Index Problem , 1965 .
[43] Mauro Dell'Amico,et al. Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.
[44] L. Kantorovich. On the Translocation of Masses , 2006 .
[45] Jesús A. De Loera,et al. Algebraic and Geometric Ideas in the Theory of Discrete Optimization , 2012, MOS-SIAM Series on Optimization.
[46] John von Neumann,et al. 1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .
[47] L. Carlitz,et al. Enumeration of symmetric arrays , 1966 .
[48] R. Yoshida,et al. A generating function for all semi-magic squares and the volume of the Birkhoff polytope , 2009 .
[49] M. Vlach,et al. Letter to the Editor - On the Necessary Conditions for the Existence of the Solution of the Multi-Index Transportation Problem , 1967, Oper. Res..
[50] Martin E. Dyer,et al. Planar 3DM is NP-Complete , 1986, J. Algorithms.
[51] Francisco Santos,et al. A counterexample to the Hirsch conjecture , 2010, ArXiv.
[52] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[53] Doron Zeilberger. The Ehrhart polynomial of the Birkhoff polytope , 2004 .
[54] Richard P. Stanley,et al. Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .
[55] Sven de Vries,et al. Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography , 1998, Int. J. Imaging Syst. Technol..
[56] Michel Balinski,et al. The Stable Allocation (or Ordinal Transportation) Problem , 2002, Math. Oper. Res..
[57] F. L. Hitchcock. The Distribution of a Product from Several Sources to Numerous Localities , 1941 .
[58] V. Rich. Personal communication , 1989, Nature.
[59] Maya Mohsin Ahmed,et al. Algebraic Combinatorics of Magic Squares , 2004 .
[60] Soojin Cho,et al. CONVEX POLYTOPES OF GENERALIZED DOUBLY STOCHASTIC MATRICES , 2001 .
[61] Nitin R. Patel,et al. A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables , 1983 .
[62] S E Fienberg,et al. INAUGURAL ARTICLE by a Recently Elected Academy Member:Bounds for cell entries in contingency tables given marginal totals and decomposable graphs , 2000 .
[63] Mohamed Omar,et al. On Volumes of Permutation Polytopes , 2013 .
[64] Geir Dahl,et al. Tridiagonal doubly stochastic matrices , 2004 .
[65] Raymond Hemmecke,et al. ON THE COMPUTATION OF HILBERT BASES OF CONES , 2002 .
[66] G. Ziegler. Lectures on Polytopes , 1994 .
[67] Fu Liu. Perturbation of transportation polytopes , 2013, J. Comb. Theory, Ser. A.
[68] V. Klee,et al. FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .
[69] Martin E. Dyer,et al. Sampling contingency tables , 1997 .
[70] Lawrence H. Cox,et al. Bounds on Entries in 3-Dimensional Contingency Tables Subject to Given Marginal Totals , 2002, Inference Control in Statistical Databases.
[71] J. Scott Provan,et al. Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..
[72] S. Onn. Nonlinear Discrete Optimization , 2010 .
[73] Joachim von Below. On a theorem of L. Mirsky on even doubly-stochastic matrices , 1985, Discret. Math..
[74] S. Sullivant,et al. Sequential importance sampling for multiway tables , 2006, math/0605615.
[75] Martin E. Dyer,et al. Random walks on the vertices of transportation polytopes with constant number of sources , 2008 .
[76] T. Koopmans. Optimum Utilization of the Transportation System , 1949 .
[77] Sven de Vries,et al. On the reconstruction of binary and permutation matrices under (binary) tomographic constraints , 2008, Theor. Comput. Sci..
[78] Steffen Borgwardt,et al. On the diameter of partition polytopes and vertex-disjoint cycle cover , 2013, Math. Program..
[79] Peter Gritzmann,et al. On the index of Siegel grids and its application to the tomography of quasicrystals , 2008, Eur. J. Comb..
[80] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[81] David Perkinson,et al. Some facets of the polytope of even permutation matrices , 2004 .
[82] William H. Cunningham,et al. On the even permutation polytope , 2004 .
[83] A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1994 .
[84] L. Stougie. A polynomial bound on the diameter of the transportation polytope , 2002 .
[85] Bernd Gärtner,et al. Understanding and using linear programming , 2007, Universitext.
[86] Ruriko Yoshida,et al. Estimating the number of zero-one multi-way tables via sequential importance sampling , 2011 .
[87] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[88] Persi Diaconis,et al. Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..
[89] Alan Hoffman,et al. What the transportation problem did for me , 2007, Ann. Oper. Res..
[90] Jesús A. De Loera,et al. Graphs of transportation polytopes , 2007, J. Comb. Theory, Ser. A.
[91] Leen Stougie,et al. A quadratic bound on the diameter of the transportation polytope , 2002 .
[92] N. Tomizawa,et al. On some techniques useful for solution of transportation network problems , 1971, Networks.
[93] Ernesto Vallejo,et al. Kronecker products and the RSK correspondence , 2010, Discret. Math..
[94] Enide Andrade Martins,et al. Face counting on an Acyclic Birkhoff polytope , 2009 .
[95] Richard A. Brualdi,et al. Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function , 1977, J. Comb. Theory A.
[96] Alexander Barvinok,et al. Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes , 2007, 0709.3810.
[97] Brendan D. McKay,et al. The asymptotic volume of the Birkhoff polytope , 2007, 0705.2422.
[98] Igor Pak,et al. Four Questions on Birkhoff Polytope , 2000 .
[99] Peter Gritzmann,et al. Discrete Tomography: Determination of Finite Sets by X-Rays , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[100] E. Klafszky,et al. Variants of the Hungarian method for solving linear programming problems , 1989 .
[101] Graham Smith,et al. Technical Note - Further Necessary Conditions for the Existence of a Solution to the Multi-Index Problem , 1973, Oper. Res..
[102] K. Haley. The Multi-Index Problem , 1963 .
[103] Igor Pak,et al. Hook length formula and geometric combinatorics. , 2001 .
[104] Ramayya Krishnan,et al. Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators , 1999 .
[105] O. Bolotina,et al. On stability of the , 2003 .
[106] Geir Dahl,et al. Transportation matrices with staircase patterns and majorization , 2008 .
[107] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[108] Louis J. Billera,et al. The Combinatorics of Permutation Polytopes , 1994, Formal Power Series and Algebraic Combinatorics.
[109] Richard P. Stanley,et al. Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings , 1976 .
[110] J. Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .
[111] H. W. Kuhn B R Y N Mawr College. Variants of the Hungarian Method for Assignment Problems' , 1955 .
[112] Jane Zundel. MATCHING THEORY , 2011 .
[113] Rushmir Mahmutćehajić. Paths , 2014, The Science of Play.
[114] Takao Nishizeki,et al. Planar Graphs: Theory and Algorithms , 1988 .
[115] M. L. Balinski,et al. The Hirsch Conjecture for Dual Transportation Polyhedra , 1984, Math. Oper. Res..
[116] V. A. Yemelicher,et al. Polytopes, Graphs and Optimisation , 1984 .
[117] Andreas Alpers,et al. The two-dimensional Prouhet-Tarry-Escott problem , 2007 .
[118] Yves Crama,et al. Approximation algorithms for three-dimensional assignment problems with triangle inequalities , 1992 .
[119] Shmuel Onn,et al. Geometry, Complexity, and Combinatorics of Permutation Polytopes , 1993, J. Comb. Theory A.
[120] Raymond Hemmecke,et al. A polynomial oracle-time algorithm for convex integer minimization , 2007, Math. Program..
[121] Jesús A. De Loera,et al. The Complexity of Three-Way Statistical Tables , 2002, SIAM J. Comput..
[122] Bolian Liu,et al. The polytope of even doubly stochastic matrices , 1991, J. Comb. Theory, Ser. A.
[123] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[124] D. Cvetkovic,et al. A Combinatorial Approach to Matrix Theory and Its Applications , 2008 .
[125] Martin E. Dyer,et al. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.
[126] Jesús A. De Loera,et al. Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable , 2012, Math. Oper. Res..
[127] Yuguo Chen,et al. Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .
[128] K. B. Haley,et al. Letter to the Editor - Note on the Letter by Morávek and Vlach , 1967, Oper. Res..
[129] Yuguo Chen,et al. Conditional Inference on Tables With Structural Zeros , 2007 .
[130] PETER GRITZMANN,et al. Uniqueness in Discrete Tomography: Three Remarks and a Corollary , 2011, SIAM J. Discret. Math..
[131] Sven de Vries,et al. Approximating Binary Images from Discrete X-Rays , 2000, SIAM J. Optim..
[132] Frits C. R. Spieksma,et al. Multi-index Transportation Problems , 2009, Encyclopedia of Optimization.
[133] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .