Maximizing energy efficiency of variable stiffness actuators through an interval-based optimization framework

[1]  Giorgio Grioli,et al.  A Stiffness Estimator for Agonistic–Antagonistic Variable-Stiffness-Actuator Devices , 2014, IEEE Transactions on Robotics.

[2]  Fumiya Iida,et al.  Determinants for Stiffness Adjustment Mechanisms , 2016, J. Intell. Robotic Syst..

[3]  Sami Haddadin,et al.  Physical Human-Robot Interaction , 2016, Springer Handbook of Robotics, 2nd Ed..

[4]  Yoshihiko Nakamura,et al.  Design of programmable passive compliance shoulder mechanism , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Robert N. K. Loh,et al.  Passive compliance versus active compliance in robot‐based automated assembly systems , 1998 .

[6]  Nikolaos G. Tsagarakis,et al.  VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Nikolaos G. Tsagarakis,et al.  Exploiting natural dynamics for energy minimization using an Actuator with Adjustable Stiffness (AwAS) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  David W. Robinson,et al.  Design and analysis of series elasticity in closed-loop actuator force control , 2000 .

[9]  Nikolaos G. Tsagarakis,et al.  How design can affect the energy required to regulate the stiffness in variable stiffness actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[10]  Bram Vanderborght,et al.  Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators , 2009, Int. J. Robotics Res..

[11]  Alin Albu-Schäffer,et al.  Safety Evaluation of Physical Human-Robot Interaction via Crash-Testing , 2007, Robotics: Science and Systems.

[12]  Ian Briggs,et al.  Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions , 2015, FM.

[13]  Nikolaos G. Tsagarakis,et al.  Variable impedance actuators: Moving the robots of tomorrow , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  D. Lefeber,et al.  Series and Parallel Elastic Actuation: Impact of natural dynamics on power and energy consumption , 2016 .

[15]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[16]  Amir Homayoun Jafari Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators , 2014 .

[17]  Giorgio Grioli,et al.  VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans , 2008, 2008 IEEE International Conference on Robotics and Automation.

[18]  André Seyfarth,et al.  Stiffness adjustment of a Series Elastic Actuator in an ankle-foot prosthesis for walking and running: The trade-off between energy and peak power optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  André Crosnier,et al.  Collaborative manufacturing with physical human–robot interaction , 2016 .

[20]  Dimitar Chakarov Study of the passive compliance of parallel manipulators , 1999 .

[21]  Giorgio Grioli,et al.  Variable Stiffness Actuators: Review on Design and Components , 2016, IEEE/ASME Transactions on Mechatronics.

[22]  Stefano Stramigioli,et al.  The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification , 2014, IEEE/ASME Transactions on Mechatronics.

[23]  N. G. Tsagarakis,et al.  A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS) , 2013, IEEE/ASME Transactions on Mechatronics.

[24]  Bram Vanderborght,et al.  Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators , 2006, Int. J. Robotics Res..

[25]  Sehoon Oh,et al.  Design and Control Considerations for High-Performance Series Elastic Actuators , 2014, IEEE/ASME Transactions on Mechatronics.

[26]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[27]  Nikolaos G. Tsagarakis,et al.  A new variable stiffness actuator (CompAct-VSA): Design and modelling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Manuel G. Catalano,et al.  VSA-HD: From the enumeration analysis to the prototypical implementation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Antonio Bicchi,et al.  Embodying Desired Behavior in Variable Stiffness Actuators , 2011 .

[30]  Alessandro De Luca,et al.  Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[31]  E. Hansen Global optimization using interval analysis: The one-dimensional case , 1979 .

[32]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[33]  André Seyfarth,et al.  A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running , 2012, 2012 IEEE International Conference on Robotics and Automation.

[34]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[35]  S. Stramigioli,et al.  A concept for a new Energy Efficient actuator , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[36]  Maghsud Solimanpur,et al.  Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm , 2008, Comput. Ind. Eng..

[37]  Hartmut Geyer,et al.  Compact nonlinear springs with user defined torque-deflection profiles for series elastic actuators , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Nikolaos G. Tsagarakis,et al.  AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio , 2011, 2011 IEEE International Conference on Robotics and Automation.

[39]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[40]  Werner Friedl,et al.  FAS A flexible antagonistic spring element for a high performance over , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Manuel Laguna,et al.  Tabu Search , 1997 .

[42]  Jianrong Tan,et al.  A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism , 2018, IEEE/ASME Transactions on Mechatronics.

[43]  Stefano Stramigioli,et al.  Energy Efficient Control of Robots with Variable Stiffness Actuators , 2010 .

[44]  Nikolaos G. Tsagarakis,et al.  Energy efficient actuators with adjustable stiffness: a review on AwAS, AwAS-II and CompACT VSA changing stiffness based on lever mechanism , 2015, Ind. Robot.

[45]  Alin Albu-Schäffer,et al.  Bidirectional antagonistic variable stiffness actuation: Analysis, design & Implementation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[46]  B L Davies,et al.  Active compliance in robotic surgery—the use of force control as a dynamic constraint , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[47]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[48]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Jiantao Sun,et al.  Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II) , 2018, Mechanism and Machine Theory.

[50]  Charles A. Klein,et al.  Use of Active Compliance in the Control of Legged Vehicles , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Frédéric Messine,et al.  Optimal design of electromechanical actuators: a new method based on global optimization , 1998 .

[52]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[53]  Antonio Bicchi,et al.  An atlas of physical human-robot interaction , 2008 .

[54]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.