Systems Biology: The Next Frontier for Bioinformatics

Biochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology, by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from ‘omics platform technologies, in particular “downstream” technologies relative to genome sequencing, including transcriptomics, proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date, particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms. The inevitable role bioinformatics plays in modern systems biology puts mathematical and computational sciences as an equal partner to analytical and experimental biology. Furthermore, mathematical and computational models are expected to become increasingly prevalent representations of our knowledge about specific biochemical systems.

[1]  Jens Nielsen,et al.  The next wave in metabolome analysis. , 2005, Trends in biotechnology.

[2]  Victor A. McKusick,et al.  A new discipline, a new name, a new journal , 1987 .

[3]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[4]  F Baganz,et al.  Systematic functional analysis of the yeast genome. , 1998, Trends in biotechnology.

[5]  F. Bruggeman,et al.  The nature of systems biology. , 2007, Trends in microbiology.

[6]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[7]  M. Tomita,et al.  Metabolite Profiling Reveals YihU as a Novel Hydroxybutyrate Dehydrogenase for Alternative Succinic Semialdehyde Metabolism in Escherichia coli* , 2009, The Journal of Biological Chemistry.

[8]  J. Handelsman,et al.  Metagenomics: genomic analysis of microbial communities. , 2004, Annual review of genetics.

[9]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[10]  Masaru Tomita,et al.  Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. , 2008, Molecular bioSystems.

[11]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[12]  Philip E. Bourne,et al.  The RCSB PDB information portal for structural genomics , 2005, Nucleic Acids Res..

[13]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[14]  D. Noble Modeling the Heart--from Genes to Cells to the Whole Organ , 2002, Science.

[15]  H. Lehrach,et al.  Regulatory crosstalk of the metabolic network. , 2010, Trends in biochemical sciences.

[16]  Trey Ideker,et al.  Building with a scaffold: emerging strategies for high- to low-level cellular modeling. , 2003, Trends in biotechnology.

[17]  Jamey D. Young,et al.  An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis , 2008, Biotechnology and bioengineering.

[18]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[19]  Oliver Fiehn,et al.  Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks , 2001, Comparative and functional genomics.

[20]  Ken W. Y. Cho,et al.  Xenopus as a model system to study transcriptional regulatory networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[22]  Hiroaki Kitano,et al.  CellDesigner: a process diagram editor for gene-regulatory and biochemical networks , 2003 .

[23]  L. Smith Automated DNA sequencing and the analysis of the human genome. , 1987, Genome.

[24]  S. Oliver,et al.  Metabolomics and Systems Biology in Saccharomyces cerevisiae , 2006 .

[25]  J. Stelling Mathematical models in microbial systems biology. , 2004, Current opinion in microbiology.

[26]  Damian Szklarczyk,et al.  STITCH 2: an interaction network database for small molecules and proteins , 2009, Nucleic Acids Res..

[27]  Christian L. Barrett,et al.  Systems biology as a foundation for genome-scale synthetic biology. , 2006, Current opinion in biotechnology.

[28]  J. Mattick The Functional Genomics of Noncoding RNA , 2005, Science.

[29]  Erwin P. Gianchandani,et al.  Systems analyses characterize integrated functions of biochemical networks. , 2006, Trends in biochemical sciences.

[30]  Olaf Wolkenhauer,et al.  Systems Biology: the Reincarnation of Systems Theory Applied in Biology? , 2001, Briefings Bioinform..

[31]  C. Koncz,et al.  Changing images of the gene. , 2006, Advances in genetics.

[32]  Thomas R Gingeras,et al.  Origin of phenotypes: genes and transcripts. , 2007, Genome research.

[33]  Wolfgang Wiechert,et al.  From stationary to instationary metabolic flux analysis. , 2005, Advances in biochemical engineering/biotechnology.

[34]  S. Rastan,et al.  Functional genomics: going forwards from the databases. , 1997, Current opinion in genetics & development.

[35]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[36]  G. Whitesides,et al.  Complexity in chemistry. , 1999, Science.

[37]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[38]  Maureen A. O’Malley,et al.  Fundamental issues in systems biology. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[39]  U. Sauer,et al.  CcpN Controls Central Carbon Fluxes in Bacillus subtilis , 2008, Journal of bacteriology.

[40]  Piero Carninci,et al.  Tagging mammalian transcription complexity. , 2006, Trends in genetics : TIG.

[41]  Shankar Mukherji,et al.  Synthetic biology: understanding biological design from synthetic circuits , 2009, Nature Reviews Genetics.

[42]  M. Ferrer,et al.  Metagenomics approaches in systems microbiology. , 2009, FEMS microbiology reviews.

[43]  F. Sanger,et al.  A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. , 1975, Journal of molecular biology.

[44]  Sang Yup Lee,et al.  Systems biotechnology for strain improvement. , 2005, Trends in biotechnology.

[45]  Thomas Schlitt,et al.  Protein-protein interaction databases: keeping up with growing interactomes , 2009, Human Genomics.

[46]  Yinjie J. Tang,et al.  Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry , 2006, Journal of bacteriology.

[47]  Yinjie J. Tang,et al.  Flux Analysis of Central Metabolic Pathways in Geobacter metallireducens during Reduction of Soluble Fe(III)-Nitrilotriacetic Acid , 2007, Applied and Environmental Microbiology.

[48]  S. Jonjić,et al.  Modulation of natural killer cell activity by viruses. , 2010, Current opinion in microbiology.

[49]  Marc W Kirschner,et al.  The Meaning of Systems Biology , 2005, Cell.

[50]  R. Weiss,et al.  Advances in synthetic biology: on the path from prototypes to applications. , 2005, Current opinion in biotechnology.

[51]  H. Brunner Annual Review of Genomics and Human Genetics , 2001, European Journal of Human Genetics.

[52]  Barbara M. Bakker,et al.  Experimental and in Silico Analyses of Glycolytic Flux Control in Bloodstream Form Trypanosoma brucei* , 2005, Journal of Biological Chemistry.

[53]  Barbara M. Bakker,et al.  What Controls Glycolysis in Bloodstream Form Trypanosoma brucei?* , 1999, The Journal of Biological Chemistry.

[54]  M. Gerstein,et al.  What is a gene, post-ENCODE? History and updated definition. , 2007, Genome research.

[55]  Jens Nielsen,et al.  Systems biology of lipid metabolism: From yeast to human , 2009, FEBS letters.

[56]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[57]  Joshua S Yuan,et al.  Plant systems biology comes of age. , 2008, Trends in plant science.

[58]  P. Brazhnik,et al.  Gene networks: how to put the function in genomics. , 2002, Trends in biotechnology.

[59]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[60]  Abdul Salam Jarrah,et al.  Algebraic models of biochemical networks. , 2009, Methods in enzymology.

[61]  H. Kacser,et al.  The molecular basis of dominance. , 1981, Genetics.

[62]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[63]  Lotfi A. Zadeh,et al.  General System Theory , 1962 .

[64]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[65]  Sven Sahle,et al.  Computational modeling of biochemical networks using COPASI. , 2009, Methods in molecular biology.

[66]  Neil Swainston,et al.  Towards a genome-scale kinetic model of cellular metabolism , 2010, BMC Systems Biology.

[67]  J. Auwerx,et al.  Mouse phenogenomics: the fast track to "systems metabolism". , 2005, Cell metabolism.

[68]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[69]  Y. Lazebnik Can a biologist fix a radio? — or, what I learned while studying apoptosis , 2004, Biochemistry (Moscow).

[70]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[71]  T. Lithgow,et al.  Evolution of the Molecular Machines for Protein Import into Mitochondria , 2006, Science.

[72]  Sui Huang,et al.  Back to the biology in systems biology: what can we learn from biomolecular networks? , 2004, Briefings in functional genomics & proteomics.

[73]  Sarah M. Keating,et al.  Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. , 2004, Systems biology.

[74]  Y. Lazebnik Can a biologist fix a radio? — or, what i learned while studying apoptosis , 2004, Biochemistry (Moscow).

[75]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[76]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[77]  G. Stephanopoulos,et al.  Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. , 2007, Metabolic engineering.

[78]  R. May Uses and Abuses of Mathematics in Biology , 2004, Science.

[79]  D. Noble,et al.  Systems Biology: An Approach , 2010, Clinical pharmacology and therapeutics.

[80]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[81]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[82]  Doron Levy,et al.  Modeling and simulation of the immune system as a self-regulating network. , 2009, Methods in enzymology.

[83]  T. Gingeras,et al.  Genome-wide transcription and the implications for genomic organization , 2007, Nature Reviews Genetics.

[84]  David C James,et al.  Systems biotechnology of mammalian cell factories. , 2008, Briefings in functional genomics & proteomics.

[85]  J. Avise,et al.  Evolving genomic metaphors: a new look at the language of DNA. , 2001, Science.

[86]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[87]  D. Noble,et al.  Systems biology and the virtual physiological human , 2009, Molecular systems biology.

[88]  M. Boguski,et al.  Functional genomics: it's all how you read it. , 1997, Science.

[89]  P. Portin The elusive concept of the gene. , 2009, Hereditas.

[90]  B. Palsson,et al.  Toward Metabolic Phenomics: Analysis of Genomic Data Using Flux Balances , 1999, Biotechnology progress.

[91]  Nicola Zamboni,et al.  Novel biological insights through metabolomics and 13C-flux analysis. , 2009, Current opinion in microbiology.

[92]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[93]  M. Vidal,et al.  Integrating 'omic' information: a bridge between genomics and systems biology. , 2003, Trends in genetics : TIG.

[94]  B. Garcia,et al.  Proteomics , 2011, Journal of biomedicine & biotechnology.

[95]  G. Stephanopoulos Metabolic fluxes and metabolic engineering. , 1999, Metabolic engineering.

[96]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[97]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[98]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[99]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[100]  Edison T Liu,et al.  Systems Biology, Integrative Biology, Predictive Biology , 2005, Cell.

[101]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[102]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[103]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[104]  Howard Ochman,et al.  Excavating the Functional Landscape of Bacterial Cells , 2009, Science.

[105]  F. Hynne,et al.  Full-scale model of glycolysis in Saccharomyces cerevisiae. , 2001, Biophysical chemistry.

[106]  Yinjie J. Tang,et al.  Advances in analysis of microbial metabolic fluxes via (13)C isotopic labeling. , 2009, Mass spectrometry reviews.

[107]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[108]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[109]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[110]  Allen W Cowley The elusive field of systems biology. , 2004, Physiological genomics.

[111]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[112]  F. Collins,et al.  The Human Genome Project: Lessons from Large-Scale Biology , 2003, Science.

[113]  Mihajlo D. Mesarovic,et al.  Systems Theory and Biology­ View of a Theoretician * , 1968 .

[114]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[115]  P. Griffiths,et al.  Genes in the Postgenomic Era , 2006, Theoretical medicine and bioethics.

[116]  K. Martin,et al.  mRNA Localization: Gene Expression in the Spatial Dimension , 2009, Cell.

[117]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[118]  E. D. Hyman A new method of sequencing DNA. , 1988, Analytical biochemistry.

[119]  Lloyd M. Smith,et al.  Fluorescence detection in automated DNA sequence analysis , 1986, Nature.

[120]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[121]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[122]  Hiroaki Kitano,et al.  Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway , 2009, Molecular systems biology.

[123]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[124]  M. Rubin,et al.  Integrative biology of prostate cancer progression. , 2006, Annual review of pathology.

[125]  R. Brent,et al.  Genomic Biology , 2000, Cell.

[126]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[127]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[128]  Edison T. Liu,et al.  Integrative biology — a strategy for systems biomedicine , 2009, Nature Reviews Genetics.

[129]  Christoph Wittmann,et al.  Transcriptional and Metabolic Responses of Bacillus subtilis to the Availability of Organic Acids: Transcription Regulation Is Important but Not Sufficient To Account for Metabolic Adaptation , 2006, Applied and Environmental Microbiology.

[130]  Stuart K. Kim,et al.  Systems biology of aging in four species. , 2007, Current opinion in biotechnology.

[131]  U. Sauer,et al.  Convergent Peripheral Pathways Catalyze Initial Glucose Catabolism in Pseudomonas putida: Genomic and Flux Analysis , 2007, Journal of bacteriology.

[132]  R. Aebersold,et al.  Proteomics: the first decade and beyond , 2003, Nature Genetics.

[133]  Adam P. Arkin,et al.  Complex Systems: From chemistry to systems biology , 2009, Proceedings of the National Academy of Sciences.

[134]  Paulo P. Amaral,et al.  The Eukaryotic Genome as an RNA Machine , 2008, Science.

[135]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[136]  Edda Klipp,et al.  Systems Biology , 1994 .

[137]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[138]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[139]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[140]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[141]  F. Bruggeman,et al.  Cancer: a Systems Biology disease. , 2006, Bio Systems.

[142]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..