A Sampling-Based Motion Planning Approach to Maintain Visibility of Unpredictable Targets

This paper deals with the surveillance problem of computing the motions of one or more robot observers in order to maintain visibility of one or several moving targets. The targets are assumed to move unpredictably, and the distribution of obstacles in the workspace is assumed to be known in advance. Our algorithm computes a motion strategy by maximizing the shortest distance to escape—the shortest distance the target must move to escape an observer's visibility region. Since this optimization problem is intractable, we use randomized methods to generate candidate surveillance paths for the observers. We have implemented our algorithms, and we provide experimental results using real mobile robots for the single target case, and simulation results for the case of two targets-two observers.

[1]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[2]  Héctor H. González-Baños,et al.  Motion strategies for maintaining visibility of a moving target , 1997, Proceedings of International Conference on Robotics and Automation.

[3]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[4]  Daniel P. Huttenlocher,et al.  Tracking non-rigid objects in complex scenes , 1993, 1993 (4th) International Conference on Computer Vision.

[5]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[6]  Devin J. Balkcom Geometric Construction of Time Optimal Trajectories for Differential Drive Robots , 2000 .

[7]  Jean-Claude Latombe,et al.  Landmark-Based Robot Navigation , 1992, Algorithmica.

[8]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[9]  S. Sastry,et al.  Probabilistic pursuit-evasion games: a one-step Nash approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[10]  Nancy M. Amato,et al.  A Kinematics-Based Probabilistic Roadmap Method for Closed Chain Systems , 2001 .

[11]  Rafael Murrieta-Cid,et al.  Landmark identification and tracking in natural environment , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[12]  Gaurav S. Sukhatme,et al.  Tracking Targets Using Multiple Robots: The Effect of Environment Occlusion , 2002, Auton. Robots.

[13]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[14]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 2001, IEEE Trans. Robotics Autom..

[15]  Craig Becker,et al.  An Intelligent Observer , 1995, ISER.

[16]  Rafael Murrieta-Cid,et al.  Robot motion planning for map building , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[18]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[19]  P. Bullen Handbook of means and their inequalities , 1987 .

[20]  Alejandro Sarmiento,et al.  Maintaining visibility of a moving target at a fixed distance: the case of observer bounded speed , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[22]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[23]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[24]  Héctor H. González-Baños,et al.  Real-time combinatorial tracking of a target moving unpredictably among obstacles , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[25]  Seth Hutchinson,et al.  A Framework for Real-time Path Planning in Changing Environments , 2002, Int. J. Robotics Res..

[26]  Jean-Claude Latombe,et al.  Reliable navigation using landmarks , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[27]  Rafael Murrieta-Cid,et al.  Visual Navigation in Natural Environments: From Range and Color Data to a Landmark-Based Model , 2002, Auton. Robots.

[28]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[29]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[30]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[31]  G. Toussaint,et al.  On a class of O(n²) problems in . . . , 1993 .

[32]  Seth Hutchinson Exploiting visual constraints in robot motion planning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[33]  Camillo J. Taylor,et al.  Dynamic Sensor Planning and Control for Optimally Tracking Targets , 2003, Int. J. Robotics Res..

[34]  D.J. Kriegman,et al.  Stereo vision and navigation in buildings for mobile robots , 1989, IEEE Trans. Robotics Autom..

[35]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion in an Unknown Planar Environment , 2004, Int. J. Robotics Res..

[36]  Lynne E. Parker,et al.  Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets , 2002, Auton. Robots.

[37]  Alejandro Sarmiento,et al.  On the existence of a strategy to maintain a moving target within the sensing range of an observer reacting with delay , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[38]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[39]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[40]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[41]  P. Varaiya,et al.  Differential games , 1971 .

[42]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[43]  Jean-Claude Latombe,et al.  Robot motion planning with many degrees of freedom and dynamic constraints , 1991 .

[44]  Héctor H. González-Baños,et al.  A reactive motion planner to maintain visibility of unpredictable targets , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[45]  Rufus Isaacs,et al.  Differential Games , 1965 .

[46]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .