One-Shot Operational Quantum Resource Theory.

A fundamental approach for the characterization and quantification of all kinds of resources is to study the conversion between different resource objects under certain constraints. Here we analyze, from a resource-nonspecific standpoint, the optimal efficiency of resource formation and distillation tasks with only a single copy of the given quantum state, thereby establishing a unified framework of one-shot quantum resource manipulation. We find general bounds on the optimal rates characterized by resource measures based on the smooth max- or min-relative entropies and hypothesis testing relative entropy, as well as the free robustness measure, providing them with general operational meanings in terms of optimal state conversion. Our results encompass a wide class of resource theories via the theory-dependent coefficients we introduce, and the discussions are solidified by important examples, such as entanglement, coherence, superposition, magic states, asymmetry, and thermal nonequilibrium.

[1]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[2]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[3]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[4]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[5]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[6]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[7]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[8]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[9]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[10]  Seth Lloyd,et al.  Diagonal quantum discord , 2017, Journal of Physics A: Mathematical and Theoretical.

[11]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.

[12]  D. Bruß,et al.  Maximal coherence and the resource theory of purity , 2016, New Journal of Physics.

[13]  Bartosz Regula,et al.  Convex geometry of quantum resource quantification , 2017, 1707.06298.

[14]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[15]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[16]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[17]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[18]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[19]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[20]  Gerardo Adesso,et al.  Certification and Quantification of Multilevel Quantum Coherence , 2017, Physical Review X.

[21]  R. Duan,et al.  Quantum majorization and a complete set of entropic conditions for quantum thermodynamics , 2017, Nature Communications.

[22]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[23]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[24]  Nilanjana Datta,et al.  How many singlets are needed to create a bipartite state using LOCC , 2009 .

[25]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[26]  Yeong-Cherng Liang,et al.  A resource theory of quantum memories and their faithful verification with minimal assumptions , 2017, 1710.04710.

[27]  Seth Lloyd,et al.  Resource Destroying Maps. , 2016, Physical review letters.

[28]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[29]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[30]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[31]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[32]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[34]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[35]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[36]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[37]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[38]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2011 .

[39]  Carlos Palazuelos,et al.  Resource Theory of Entanglement with a Unique Multipartite Maximally Entangled State. , 2018, Physical review letters.

[40]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[41]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[42]  Gerardo Adesso,et al.  Operational Advantage of Quantum Resources in Subchannel Discrimination. , 2018, Physical review letters.

[43]  TOBIAS FRITZ,et al.  Resource convertibility and ordered commutative monoids , 2015, Mathematical Structures in Computer Science.

[44]  Giulio Chiribella,et al.  Microcanonical thermodynamics in general physical theories , 2016, 1608.04460.

[45]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[46]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[47]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[48]  Paulina Marian,et al.  Relative entropy is an exact measure of non-Gaussianity , 2013, 1308.2939.

[49]  M. Paris,et al.  Resource theory of quantum non-Gaussianity and Wigner negativity , 2018, Physical Review A.

[50]  Chi-Kwong Li,et al.  Evaluating the robustness of k -coherence and k -entanglement , 2018, Physical Review A.

[51]  Rahul Jain,et al.  Quantifying Resources in General Resource Theory with Catalysts. , 2018, Physical review letters.

[52]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[53]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2009, 0908.0424.

[54]  G. Gour Quantum resource theories in the single-shot regime , 2016, 1610.04247.

[55]  Marco G. Genoni,et al.  Quantifying the non-Gaussian character of a quantum state by quantum relative entropy , 2007, 0805.1645.

[56]  Michal Oszmaniec,et al.  Operational relevance of resource theories of quantum measurements , 2019, Quantum.

[57]  Jiangwei Shang,et al.  Quantifying Quantum Resources with Conic Programming. , 2018, Physical review letters.

[58]  S. Fei,et al.  Maximum Relative Entropy of Coherence: An Operational Coherence Measure. , 2017, Physical review letters.

[59]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[60]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[61]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[62]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[63]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[64]  M. Steiner Generalized robustness of entanglement , 2003, quant-ph/0304009.

[65]  J. Renes,et al.  Beyond heat baths: Generalized resource theories for small-scale thermodynamics. , 2014, Physical review. E.

[66]  D. Gross,et al.  Robustness of Magic and Symmetries of the Stabiliser Polytope , 2018, Quantum.

[67]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[68]  Nicole Yunger Halpern Beyond heat baths II: framework for generalized thermodynamic resource theories , 2014, 1409.7845.

[69]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[70]  Ryuji Takagi,et al.  Convex resource theory of non-Gaussianity , 2018, Physical Review A.

[71]  M. A. Jafarizadeh,et al.  EXACT CALCULATION OF ROBUSTNESS OF ENTANGLEMENT VIA CONVEX SEMI-DEFINITE PROGRAMMING , 2005 .

[72]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[73]  M. Plenio,et al.  Resource Theory of Superposition. , 2017, Physical review letters.