Monosynaptic Inputs from Pre-and Parasubiculum Converge on Medial Entorhinal Cortex Principal Neurons

Interactions between the medial entorhinal cortex (MEC), presubiculum (PrS), and parasubiculum (PaS), all essential components of the hippocampalparahippocampal navigational system, are still poorly understood. The PrS and PaS are credited to provide directional information to MEC. Efferents from PrS and PaS show a laminar specific terminal distribution in MEC superficial layers, where they also contact apical dendrites of layer V neurons. Since spatially modulated neurons are present in all layers we tested whether principal neurons in all layers of MEC receive both inputs monosynaptically. Using a newly developed anatomical-electrophysiological slice approach, we show that principal neurons in all layers of MEC receive convergent monosynaptic inputs from PrS and PaS. Responses are layer specific and input frequency dependent. These results suggest that neurons in different layers of MEC uniquely process the same inputs, likely contributing to reported differences in their in vivo properties. Inputs converge in medial entorhinal cortex  141

[1]  Sonia Gasparini,et al.  Distance- and activity-dependent modulation of spike back-propagation in layer V pyramidal neurons of the medial entorhinal cortex. , 2011, Journal of neurophysiology.

[2]  C. Leibold,et al.  Analysis of Excitatory Microcircuitry in the Medial Entorhinal Cortex Reveals Cell-Type-Specific Differences , 2010, Neuron.

[3]  Christian Leibold,et al.  Detection of input sites in scanning photostimulation data based on spatial correlations , 2010, Journal of Neuroscience Methods.

[4]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[5]  Giorgio M. Innocenti,et al.  Dendritic Bundles, Minicolumns, Columns, and Cortical Output Units , 2010, International Journal of Developmental Neuroscience.

[6]  Chet C. Sherwood,et al.  A Comparative Perspective on Minicolumns and Inhibitory GABAergic Interneurons in the Neocortex , 2009, Front. Neuroanat..

[7]  Marc-Oliver Gewaltig,et al.  Cortext: A columnar model of bottom-up and top-down processing in the neocortex , 2009, Neural Networks.

[8]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[9]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[10]  E. G. Jones,et al.  Synchrony in the Interconnected Circuitry of the Thalamus and Cerebral Cortex , 2009, Annals of the New York Academy of Sciences.

[11]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[12]  Charlotte N. Boccara,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[13]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[14]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[15]  M. Hasselmo Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting , 2008, Hippocampus.

[16]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[17]  M. Moser,et al.  A metric for space , 2008, Hippocampus.

[18]  Christian Leibold,et al.  A novel control software that improves the experimental workflow of scanning photostimulation experiments , 2008, Journal of Neuroscience Methods.

[19]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[20]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[21]  M. Witter,et al.  Significance of the deep layers of entorhinal cortex for transfer of both perirhinal and amygdala inputs to the hippocampus , 2008, Neuroscience Research.

[22]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[23]  Lisa M. Giocomo,et al.  Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons , 2007, Hippocampus.

[24]  M. Witter,et al.  Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat , 2007, Hippocampus.

[25]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[26]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[27]  H. Pflüger,et al.  Dendritic projections of different types of octopaminergic unpaired median neurons in the locust metathoracic ganglion , 2007, Cell and Tissue Research.

[28]  F. D. Silva,et al.  Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy , 2007, Neurobiology of Disease.

[29]  E. Moser,et al.  Spatial representation and the architecture of the entorhinal cortex , 2006, Trends in Neurosciences.

[30]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[31]  H. Eichenbaum Faculty Opinions recommendation of Conjunctive representation of position, direction, and velocity in entorhinal cortex. , 2006 .

[32]  Simon M Stringer,et al.  Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning , 2006, Network.

[33]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[34]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[35]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[36]  U. Heinemann,et al.  Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold , 2004, The Journal of physiology.

[37]  Thomas J. Wills,et al.  Theta-Modulated Place-by-Direction Cells in the Hippocampal Formation in the Rat , 2004, The Journal of Neuroscience.

[38]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[39]  Floris G Wouterlood,et al.  Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat , 2004, Brain Research.

[40]  Norio Ishizuka,et al.  Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex , 2004, The Journal of comparative neurology.

[41]  M. Mehta Cooperative LTP can map memory sequences on dendritic branches , 2004, Trends in Neurosciences.

[42]  Michael W. Spratling Cortical region interactions and the functional role of apical dendrites. , 2002, Behavioral and cognitive neuroscience reviews.

[43]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[44]  K. Rockland,et al.  Parvalbumin positive dendrites co-localize with apical dendritic bundles in rat retrosplenial cortex , 2002, Neuroreport.

[45]  T. Dugladze,et al.  Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus , 2001, The European journal of neuroscience.

[46]  Gen Matsumoto,et al.  Quantification of optical signals with electrophysiological signals in neural activities of Di-4-ANEPPS stained rat hippocampal slices , 2000, Journal of Neuroscience Methods.

[47]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[48]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  F. D. da Silva,et al.  Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro , 1998, The European journal of neuroscience.

[50]  T. Dugladze,et al.  Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat , 1997, Neuroscience.

[51]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[52]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[53]  R. Miura,et al.  Models of subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[54]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[55]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[58]  T. van Groen,et al.  Dendritic bundling in layer I of granular retrosplenial cortex: Intracellular labeling and selectivity of innervation , 1990, The Journal of comparative neurology.

[59]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area , 1986, The Journal of comparative neurology.

[62]  C. Köhler,et al.  Morphological details of the projection from the presubiculum to the entorhinal area as shown with the novel PHA-L immunohistochemical tracing method in the rat , 1984, Neuroscience Letters.

[63]  A. Grinvald,et al.  Visualization of the spread of electrical activity in rat hippocampal slices by voltage‐sensitive optical probes , 1982, The Journal of physiology.

[64]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[65]  Korner Edgar A columnar model of bottom-up and top-down processing in the neocortex , 2009 .

[66]  G. Woodhall,et al.  Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex , 2005, Hippocampus.

[67]  G. Woodhall,et al.  Background synaptic activity in rat entorhinal cortical neurones: differential control of transmitter release by presynaptic receptors. , 2005, The Journal of physiology.

[68]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[69]  F. H. Lopes da Silva,et al.  Two reentrant pathways in the hippocampal‐entorhinal system , 2004, Hippocampus.

[70]  K. Rhodes,et al.  Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. , 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  D. Lewis,et al.  Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. , 2000, Cerebral cortex.

[72]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex , 2000, The Journal of comparative neurology.

[73]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[74]  George Paxinos,et al.  Atlas Of The Developing Rat Brain , 1991 .

[75]  N. Dubin Mathematical Model , 2022 .