MOF encapsulated sub-nm Pd skin/Au nanoparticles as antenna-reactor plasmonic catalyst for light driven CO2 hydrogenation

[1]  Jianqi Zhang,et al.  Au-Al intermetallic compounds: A series of more efficient LSPR materials for hot carriers-based applications than noble metal Au , 2021 .

[2]  Hong Liu,et al.  Electromagnetic induction effect induced high-efficiency hot charge generation and transfer in Pd-tipped Au nanorods to boost plasmon-enhanced formic acid dehydrogenation , 2021 .

[3]  C. Cramer,et al.  Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol , 2020, Nature Communications.

[4]  Yihe Zhang,et al.  Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction , 2020 .

[5]  Deren Yang,et al.  All‐Earth‐Abundant Photothermal Silicon Platform for CO 2 Catalysis with Nearly 100% Sunlight Harvesting Ability , 2020 .

[6]  Shuhong Yu,et al.  Metal–Organic Frameworks: Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy (Adv. Mater. 30/2020) , 2020, Advanced Materials.

[7]  G. Ozin,et al.  Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO2 Photocatalysis , 2020, Advanced materials.

[8]  F. Pan,et al.  Plasmon-Induced Interfacial Hot-Electron Transfer Directly Probed by Raman Spectroscopy , 2020, Chem.

[9]  Dayne F. Swearer,et al.  Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts , 2020 .

[10]  E. Skúlason,et al.  Hydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the MOF. , 2019, Journal of the American Chemical Society.

[11]  A. Russell,et al.  CO2 hydrogenation to high-value products via heterogeneous catalysis , 2019, Nature Communications.

[12]  Lipeng Zhang,et al.  Catalytic Mechanisms and Design Principles for Single‐Atom Catalysts in Highly Efficient CO2 Conversion , 2019, Advanced Energy Materials.

[13]  Yugang Sun,et al.  Reduction of carbon dioxide on photoexcited nanoparticles of VIII group metals. , 2019, Nanoscale.

[14]  Junfa Zhu,et al.  Metal-Organic Framework Coating Enhances the Performance of Cu2O in Photoelectrochemical CO2 Reduction. , 2019, Journal of the American Chemical Society.

[15]  Jinhua Ye,et al.  Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation , 2019, Nature Communications.

[16]  S. Linic,et al.  Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. , 2019, Faraday discussions.

[17]  Paul N. Duchesne,et al.  Principles of photothermal gas-phase heterogeneous CO2 catalysis , 2019, Energy & Environmental Science.

[18]  Y. Yoneyama,et al.  Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions , 2019, ACS Catalysis.

[19]  B. Liu,et al.  Single-Atom Catalysis toward Efficient CO2 Conversion to CO and Formate Products. , 2018, Accounts of chemical research.

[20]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[21]  Whi Dong Kim,et al.  Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts , 2018, Nature Communications.

[22]  Zhilin Yang,et al.  CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction , 2018, Nano Energy.

[23]  S. Linic,et al.  Design Principles for Directing Energy and Energetic Charge Flow in Multicomponent Plasmonic Nanostructures , 2018, ACS Energy Letters.

[24]  Zhen-liang Xu,et al.  A Monodispersed Spherical Zr-Based Metal-Organic Framework Catalyst, Pt/Au@Pd@UIO-66, Comprising an Au@Pd Core-Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO. , 2018, Small.

[25]  Lili Lin,et al.  Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. , 2018, Journal of the American Chemical Society.

[26]  Dawei Wang,et al.  Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. , 2017, Journal of the American Chemical Society.

[27]  Lan-sun Zheng,et al.  Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices. , 2017, Chemistry.

[28]  S. Linic,et al.  Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. , 2017, Nature nanotechnology.

[29]  Ping Liu,et al.  Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. , 2017, Journal of the American Chemical Society.

[30]  Michael J. McClain,et al.  Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles , 2017, Nature Communications.

[31]  P. Nordlander,et al.  Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis. , 2017, Nano letters.

[32]  O. Martin,et al.  Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy. , 2017, ACS nano.

[33]  Jian-Feng Li,et al.  Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[34]  Weitao Yang,et al.  Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation , 2017, Nature Communications.

[35]  M. Lázaro,et al.  Strain Effects on the Oxidation of CO and HCOOH on Au–Pd Core–Shell Nanoparticles , 2017 .

[36]  M. U. Khan,et al.  Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation. , 2017, Small.

[37]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[38]  L. Gu,et al.  Metal–organic frameworks as selectivity regulators for hydrogenation reactions , 2016, Nature.

[39]  Michael J. McClain,et al.  Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. , 2016, Nano letters.

[40]  Hangqi Zhao,et al.  Heterometallic antenna−reactor complexes for photocatalysis , 2016, Proceedings of the National Academy of Sciences.

[41]  S. Pennycook,et al.  Visible and Near‐Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2O5 , 2016, Advanced science.

[42]  Lei Zhang,et al.  Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis. , 2016, Journal of the American Chemical Society.

[43]  Byung‐Kook Kim,et al.  Density Functional Theory Study for Catalytic Activation and Dissociation of CO2 on Bimetallic Alloy Surfaces , 2016 .

[44]  Jingguang G. Chen,et al.  Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities , 2016 .

[45]  Xinxing Zhang,et al.  Photoelectron spectroscopic and computational study of (M-CO2)(-) anions, M = Cu, Ag, Au. , 2015, The Journal of chemical physics.

[46]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[47]  Z. Tang,et al.  Multifunctional Nanoparticle@MOF Core–Shell Nanostructures , 2013, Advanced materials.

[48]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[49]  Min Qiu,et al.  Nanosecond photothermal effects in plasmonic nanostructures. , 2012, ACS nano.

[50]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[51]  G. Hartland,et al.  Coherent Excitation of Acoustic Breathing Modes in Bimetallic Core−Shell Nanoparticles , 2000 .

[52]  G. Hartland,et al.  Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles , 1998 .

[53]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[56]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[57]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.

[58]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.