Six-degree-of-freedom haptic display using localized contact computations

We present a six-degree-of-freedom haptic rendering algorithm using localized contact computations. It takes advantage of high motion coherence due to fast force update and spatial locality near the contact regions. We first decompose the surface of each polyhedron into convex pieces and construct bounding volume hierarchies for fast proximity queries. Once the objects are intersecting, the penetration depth (PD) is estimated in the contact neighborhood between each pair of decomposed convex pieces, using a new incremental method based on local optimization. Given the computed PD values, multiple contacts near a local region are clustered together to further speed up contact force determination. We have implemented these algorithms and applied them to complex contact scenarios consisting of multiple contacts.

[1]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[2]  Yoshitaka Adachi,et al.  Intermediate representation for stiff virtual objects , 1995, Proceedings Virtual Reality Annual International Symposium '95.

[3]  Oussama Khatib,et al.  The haptic display of complex graphical environments , 1997, SIGGRAPH.

[4]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[5]  Dinesh Manocha,et al.  Six degree-of-freedom haptic display of polygonal models , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[6]  Ming C. Lin,et al.  Fast penetration depth estimation for elastic bodies using deformed distance fields , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[7]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[8]  John M. Hollerbach,et al.  Haptic manipulation of virtual mechanisms from mechanical CAD designs , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Dinesh Manocha,et al.  Fast and simple 2D geometric proximity queries using graphics hardware , 2001, I3D '01.

[10]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[11]  Gino van den Bergen,et al.  Proximity Queries and Penetration Depth Computation on 3d Game Objects , 2022 .

[12]  David Zeltzer,et al.  Dynamic simulation of autonomous legged locomotion , 1990, SIGGRAPH.

[13]  Leonidas J. Guibas,et al.  Penetration Depth of Two Convex Polytopes in 3D , 2000, Nord. J. Comput..

[14]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[15]  Thomas H. Massie,et al.  The PHANToM Haptic Interface: A Device for Probing Virtual Objects , 1994 .

[16]  Vincent Hayward,et al.  A New Compuatitional Model of Friction Applied to Haptic Rendering , 1999, ISER.

[17]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[18]  Ming C. Lin,et al.  Accelerated proximity queries between convex polyhedra by multi-level Voronoi marching , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[19]  Grigore C. Burdea,et al.  Force and Touch Feedback for Virtual Reality , 1996 .

[20]  James M. Van Verth,et al.  Adding force feedback to graphics systems: issues and solutions , 1996, SIGGRAPH.

[21]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[22]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[23]  S B MitchellJoseph,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998 .

[24]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[25]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[26]  Blake Hannaford,et al.  A two-port framework for the design of unconditionally stable haptic interfaces , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[27]  Ming C. Lin,et al.  Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition , 2001, Comput. Graph. Forum.

[28]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[29]  Stephen Cameron,et al.  Enhancing GJK: computing minimum and penetration distances between convex polyhedra , 1997, Proceedings of International Conference on Robotics and Automation.

[30]  Elaine Cohen,et al.  A framework for efficient minimum distance computations , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[31]  Leonidas J. Guibas,et al.  H-Walk: hierarchical distance computation for moving convex bodies , 1999, SCG '99.

[32]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .