Efficient Anytime CLF Reactive Planning System for a Bipedal Robot on Undulating Terrain

We propose and experimentally demonstrate a reactive planning system for bipedal robots on unexplored, challenging terrains. The system consists of a low-frequency planning thread (5 Hz) to find an asymptotically optimal path and a high-frequency reactive thread (300 Hz) to accommodate robot deviation. The planning thread includes: a multi-layer local map to compute traversability for the robot on the terrain; an anytime omnidirectional Control Lyapunov Function (CLF) for use with a Rapidly Exploring Random Tree Star (RRT*) that generates a vector field for specifying motion between nodes; a sub-goal finder when the final goal is outside of the current map; and a finite-state machine to handle high-level mission decisions. The system also includes a reactive thread to obviate the non-smooth motions that arise with traditional RRT* algorithms when performing path following. The reactive thread copes with robot deviation while eliminating non-smooth motions via a vector field (defined by a closed-loop feedback policy) that provides real-time control commands to the robot’s gait controller as a function of instantaneous robot pose. The system is evaluated on various challenging outdoor terrains and cluttered indoor scenes in both simulation and experiment on Cassie Blue, a bipedal robot with 20 degrees of freedom. All implementations are coded in C++ with the Robot Operating System (ROS) and are available at https://github.com/UMichBipedLab/CLF_reactive_planning_system.

[1]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[2]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[3]  Koushil Sreenath,et al.  3D dynamic walking on stepping stones with control barrier functions , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[4]  Omur Arslan,et al.  Sensor-based reactive navigation in unknown convex sphere worlds , 2018, Int. J. Robotics Res..

[5]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[6]  Maani Ghaffari,et al.  Contact-aided invariant extended Kalman filtering for robot state estimation , 2020, Int. J. Robotics Res..

[7]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[8]  Huei Peng,et al.  Obstacle Avoidance for Low-Speed Autonomous Vehicles With Barrier Function , 2018, IEEE Transactions on Control Systems Technology.

[9]  Jessy Grizzle,et al.  Zero Dynamics, Pendulum Models, and Angular Momentum in Feedback Control of Bipedal Locomotion , 2021, ArXiv.

[10]  Luis Moreno,et al.  Planning robot formations with fast marching square including uncertainty conditions , 2013, Robotics Auton. Syst..

[11]  Katie Byl,et al.  Smooth RRT-connect: An extension of RRT-connect for practical use in robots , 2015, 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[12]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[13]  Kai Oliver Arras,et al.  RRT-based nonholonomic motion planning using any-angle path biasing , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Paulo Tabuada,et al.  Robustness of Control Barrier Functions for Safety Critical Control , 2016, ADHS.

[16]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[17]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[18]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[19]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[20]  E. Stoll,et al.  Scalable Trajectory Optimization based on Bézier Curves , 2016 .

[21]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[22]  Jessy Grizzle,et al.  Terrain-Aware Foot Placement for Bipedal Locomotion Combining Model Predictive Control, Virtual Constraints, and the ALIP , 2021, ArXiv.

[23]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[24]  Roland Siegwart,et al.  Rolling Shutter Camera Calibration , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Jiunn-Kai Huang,et al.  LiDARTag: A Real-Time Fiducial Tag for Point Clouds , 2019 .

[26]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[27]  Daniel E. Koditschek,et al.  Exact robot navigation using power diagrams , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[28]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[29]  Shuuji Kajita,et al.  Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[30]  Andrej Zdesar,et al.  Optimum Velocity Profile of Multiple Bernstein-Bézier Curves Subject to Constraints for Mobile Robots , 2018, ACM Trans. Intell. Syst. Technol..

[31]  Yong Gao,et al.  PQ-RRT*: An improved path planning algorithm for mobile robots , 2020, Expert Syst. Appl..

[32]  Maani Ghaffari Jadidi,et al.  Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation , 2018, Robotics: Science and Systems.

[33]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[34]  J. Grizzle,et al.  Global Unifying Intrinsic Calibration for Spinning and Solid-State LiDARs , 2020, ArXiv.

[35]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[36]  Jessy W. Grizzle,et al.  Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway , 2018, 2019 American Control Conference (ACC).

[37]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[38]  Alejandro Ribeiro,et al.  Navigation Functions for Convex Potentials in a Space With Convex Obstacles , 2016, IEEE Transactions on Automatic Control.

[39]  Mustafa Mert Ankarali,et al.  RG-Trees: Trajectory-Free Feedback Motion Planning Using Sparse Random Reference Governor Trees , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[40]  Roland Siegwart,et al.  Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Lydia Tapia,et al.  COLREG-RRT: An RRT-Based COLREGS-Compliant Motion Planner for Surface Vehicle Navigation , 2018, IEEE Robotics and Automation Letters.

[42]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[43]  Marco Hutter,et al.  Probabilistic Terrain Mapping for Mobile Robots With Uncertain Localization , 2018, IEEE Robotics and Automation Letters.

[44]  Wilbert G. Aguilar,et al.  RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs , 2017, IWANN.

[45]  J. Grizzle,et al.  Improvements to Target-Based 3D LiDAR to Camera Calibration , 2019, IEEE Access.

[46]  R. Siegwart,et al.  ROBOT-CENTRIC ELEVATION MAPPING WITH UNCERTAINTY ESTIMATES , 2014 .

[47]  Tomoyuki Miyashita,et al.  Smooth Curve Fitting of Mobile Robot Trajectories Using Differential Evolution , 2020, IEEE Access.

[48]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[49]  Jiankun Wang,et al.  EB-RRT: Optimal Motion Planning for Mobile Robots , 2020, IEEE Transactions on Automation Science and Engineering.

[50]  Paulo Tabuada,et al.  Control barrier function based quadratic programs with application to adaptive cruise control , 2014, 53rd IEEE Conference on Decision and Control.

[51]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[52]  Koushil Sreenath,et al.  Dynamic Walking on Stepping Stones with Gait Library and Control Barrier Functions , 2016, WAFR.

[53]  Benjamin Kuipers,et al.  Feedback motion planning via non-holonomic RRT* for mobile robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[54]  Russ Tedrake,et al.  Whole-body motion planning with centroidal dynamics and full kinematics , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[55]  J. Grizzle,et al.  LiDARTag: A Real-Time Fiducial Tag using Point Clouds , 2019, ArXiv.

[56]  J. Grizzle,et al.  Angular Momentum about the Contact Point for Control of Bipedal Locomotion: Validation in a LIP-based Controller , 2020, ArXiv.

[57]  Benjamin Kuipers,et al.  A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment , 2011, 2011 IEEE International Conference on Robotics and Automation.

[58]  Emilio Frazzoli,et al.  RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning , 2016, Int. J. Robotics Res..

[59]  Ryan M. Eustice,et al.  Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping , 2020, IEEE Robotics and Automation Letters.

[60]  Roland Siegwart,et al.  Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[61]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[62]  Stefano Di Cairano,et al.  Continuous curvature path planning for semi-autonomous vehicle maneuvers using RRT , 2015, 2015 European Control Conference (ECC).

[63]  Christopher Reinartz,et al.  COLREGs-Informed RRT * for Collision Avoidance of Marine Crafts , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).