Short-term forecasting of electricity consumption using Gaussian processes

Masteroppgave i informasjons- og kommunikasjonsteknologi IKT590 2012 – Universitetet i Agder, Grimstad

[1]  D.J. Leith,et al.  Gaussian process prior models for electrical load forecasting , 2004, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[2]  Wu Jian,et al.  Prediction of electricity consumption based on genetic algorithm - RBF neural network , 2010, 2010 2nd International Conference on Advanced Computer Control.

[3]  Farid Melgani,et al.  Semisupervised Gaussian process regression for biophysical parameter estimation , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Edward B. Magrab,et al.  An Engineer's Guide to Matlab , 2000 .

[5]  Mohsen Hayati,et al.  Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region , 2007 .

[6]  J. Driesen,et al.  Project-oriented approach to undergraduate teaching in green power production and prediction of electricity consumption , 2005, IEEE Power Engineering Society General Meeting, 2005.

[7]  Noel Lopes,et al.  An Efficient Gradient-based Learning Algorithm Applied to Neural Networks with Selective Actuation Neurons , 2003, Neural Parallel Sci. Comput..

[8]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Kamalika Das,et al.  Block-GP: Scalable Gaussian Process Regression for Multimodal Data , 2010, 2010 IEEE International Conference on Data Mining.

[10]  Hiroyuki Mori,et al.  GP-based temperature forecasting for electric load forecasting , 2009, TENCON 2009 - 2009 IEEE Region 10 Conference.

[11]  V. M. Rao Tummala,et al.  Forecasting of electricity consumption: a comparative analysis of regression and artificial neural network models , 1993 .

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Girma Kejela Short-term forecasting of electricity consumption using Gaussian processes , 2012 .

[15]  C.P. Lim,et al.  Short Term Load Forecasting Using a Hybrid Neural Network , 2006, 2006 IEEE International Power and Energy Conference.

[16]  Lamine Mili,et al.  New robust method applied to short-term load forecasting , 2009, 2009 IEEE Bucharest PowerTech.

[17]  Hamid R. Rabiee,et al.  A Gaussian Process Regression Framework for Spatial Error Concealment with Adaptive Kernels , 2010, 2010 20th International Conference on Pattern Recognition.

[18]  M.F. Romlie,et al.  The Taguchi-neural networks approach to forecast electricity consumption , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[19]  Murray Smith,et al.  Neural Networks for Statistical Modeling , 1993 .

[20]  R. Panigrahy Nearest Neighbor Search using Kd-trees , 2006 .

[21]  Farid Melgani,et al.  Gaussian Process Regression for Estimating Chlorophyll Concentration in Subsurface Waters From Remote Sensing Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[22]  Chaoqing Yuan,et al.  Forecast of electricity consumption of Jiangsu province by grey methods , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[23]  Dit-Yan Yeung,et al.  Multi-task warped Gaussian process for personalized age estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB , 2001 .

[25]  Mohibullah,et al.  Evaluation and Forecasting of Long Term Electricity Consumption Demand for Malaysia by Statistical Analysis , 2006, 2006 IEEE International Power and Energy Conference.

[26]  Jeff Heaton,et al.  Introduction to neural networks for C , 2008 .

[27]  Miltiadis Alamaniotis,et al.  A pareto optimization approach of a Gaussian process ensemble for short-term load forecasting , 2011, 2011 16th International Conference on Intelligent System Applications to Power Systems.

[28]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[29]  Phillip Boyle,et al.  Gaussian Processes for Regression and Optimisation , 2007 .

[30]  J. Weston,et al.  Approximation Methods for Gaussian Process Regression , 2007 .

[31]  Feng Qian,et al.  On line estimation of color values (B*) in pet process using gaussian process regression , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[32]  J.M. Vesin,et al.  Bayesian learning using Gaussian process for time series prediction , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[33]  Noel Lopes,et al.  GPU Implementation of the Multiple Back-Propagation Algorithm , 2009, IDEAL.

[34]  Guang-Zhong Yang,et al.  Gaussian process prediction for cross channel consensus in body sensor networks , 2008, 2008 5th International Summer School and Symposium on Medical Devices and Biosensors.

[35]  Markus H. Gross,et al.  A hardware processing unit for point sets , 2008, GH '08.

[36]  Mark Ebden Gaussian Processes for Regression: A Quick Introduction , 2008 .

[37]  Gaurav S. Sukhatme,et al.  Toward free-living walking speed estimation using Gaussian Process-based Regression with on-body accelerometers and gyroscopes , 2010, 2010 4th International Conference on Pervasive Computing Technologies for Healthcare.

[38]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[39]  Dan W. Patterson,et al.  Artificial Neural Networks: Theory and Applications , 1998 .

[40]  Yi Lin,et al.  An Introduction to Grey Systems: Foundations, Methodology and Applications , 2003 .

[41]  David Suter,et al.  Fast Sparse Gaussian Processes Learning for Man-Made Structure Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Zainab H. Osman,et al.  Neural network based approach for short-term load forecasting , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[43]  Aki Vehtari,et al.  Bayesian Modeling with Gaussian Processes using the MATLAB Toolbox GPstuff (v3.3) , 2012, ArXiv.

[44]  Noel Lopes,et al.  Hybrid learning in a multi-neural network architecture , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[45]  H. Mori,et al.  Probabilistic short-term load forecasting with Gaussian processes , 2005, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems.