Chapter 2: Mitigation pathways compatible with 1.5°C in the context of sustainable development

Contributing Authors: Katherine Calvin (USA), Oreane Edelenbosch (Netherlands), Johannes Emmerling (Germany/Italy), Sabine Fuss (Germany), Thomas Gasser (France/Austria), Nathan Gillet (Canada), Chenmin He (China), Edgar Hertwich (Austria/USA), Lena Höglund-Isaksson (Sweden/Austria), Daniel Huppmann (Austria), Gunnar Luderer (Germany), Anil Markandya (UK/Spain), David L. McCollum (USA/Austria), Richard Millar (UK), Malte Meinshausen (Germany/Australia), Alexander Popp (Germany), Joana Correia de Oliveira de Portugal Pereira (Portugal/UK), Pallav Purohit (India/Austria), Keywan Riahi (Austria), Aurélien Ribes (France), Harry Saunders (Canada/USA), Christina Schädel (Switzerland/USA), Chris Smith (UK), Pete Smith (UK), Evelina Trutnevyte (Lithuania/Switzerland), Yang Xiu (China), Kirsten Zickfeld (Germany/Canada), Wenji Zhou (China/Austria)

[1]  Keywan Riahi,et al.  An integrated approach to energy sustainability , 2011 .

[2]  C. Heinze,et al.  Assessing the potential of calcium‐based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification , 2013 .

[3]  G. Faluvegi,et al.  Spatial patterns of radiative forcing and surface temperature response , 2014 .

[4]  P. Kyle,et al.  The SSP4: A world of deepening inequality , 2017 .

[5]  Paul Upham,et al.  Biomass energy with carbon capture and storage (BECCS or Bio-CCS) , 2011 .

[6]  D. Tilman,et al.  Global diets link environmental sustainability and human health , 2014, Nature.

[7]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[8]  P. Janssen,et al.  Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens , 2016, PLoS ONE.

[9]  T. Matsuno,et al.  Examination of a climate stabilization pathway via zero-emissions using Earth system models , 2015 .

[10]  Nicolas Treich,et al.  Priority for the Worse Off and the Social Cost of Carbon , 2016, SSRN Electronic Journal.

[11]  D. Deryng,et al.  Ten key short-term sectoral benchmarks to limit warming to 1.5°C , 2018 .

[12]  K. Sonja,et al.  Building equity in: strategies for integrating equity into modelling for a 1.5°C world , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  O. Widerberg,et al.  Exploring national and regional orchestration of non-state action for a < 1.5 °C world , 2018, International Environmental Agreements: Politics, Law and Economics.

[14]  S. Rose The role of the social cost of carbon in policy , 2012 .

[15]  J. Canadell,et al.  Simulating the Earth system response to negative emissions , 2016 .

[16]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .

[17]  Benjamin Leon Bodirsky,et al.  Investigating afforestation and bioenergy CCS as climate change mitigation strategies , 2014, Environmental Research Letters.

[18]  P. Cox,et al.  Increased importance of methane reduction for a 1.5 degree target , 2018 .

[19]  Bas Eickhout,et al.  Climate benefits of changing diet , 2009 .

[20]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[21]  R. Sands U.S. Carbon Tax Scenarios And Bioenergy , 2018 .

[22]  David J. Young,et al.  Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review , 2013 .

[23]  Steffen Fritz,et al.  Assessing the land resource–food price nexus of the Sustainable Development Goals , 2016, Science Advances.

[24]  S. Nicholson,et al.  Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response , 2017, Journal of Environmental Studies and Sciences.

[25]  J. Mülmenstädt,et al.  Comment on ``Rethinking the Lower Bound on Aerosol Radiative Forcing'' , 2017 .

[26]  P. Friedlingstein,et al.  Estimating Carbon Budgets for Ambitious Climate Targets , 2017, Current Climate Change Reports.

[27]  Keywan Riahi,et al.  Residual fossil CO2 emissions in 1.5–2 °C pathways , 2018, Nature Climate Change.

[28]  Corrado Schenone,et al.  Monitoring and evaluation of Sustainable Energy Action Plan: Practice and perspective , 2017 .

[29]  N. Gillett,et al.  Cumulative carbon emissions budgets consistent with 1.5 °C global warming , 2018, Nature Climate Change.

[30]  Thomas S. Lontzek,et al.  Stochastic integrated assessment of climate tipping points calls for strict climate policy , 2015 .

[31]  The limits to global‐warming mitigation by terrestrial carbon removal , 2017 .

[32]  Tomoko Hasegawa,et al.  Implication of Paris Agreement in the context of long-term climate mitigation goals , 2016, SpringerPlus.

[33]  N. Forsell,et al.  Contribution of the G20 economies to the global impact of the Paris agreement climate proposals , 2016, Climatic Change.

[34]  Jessica Strefler,et al.  The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE , 2014, Climatic Change.

[35]  Michael J. Walsh,et al.  Geoengineering, marine microalgae, and climate stabilization in the 21st century , 2017 .

[36]  H. Haberl,et al.  Biomass turnover time in terrestrial ecosystems halved by land use , 2016 .

[37]  Thomas H. Painter,et al.  End of the Little Ice Age in the Alps forced by industrial black carbon , 2013, Proceedings of the National Academy of Sciences.

[38]  Karsten Neuhoff Planetary Economics : Energy , Climate Change and the Three Domains of Sustainable Development , 2014 .

[39]  K. Sahrawat,et al.  Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems. , 2013, Animal : an international journal of animal bioscience.

[40]  Gareth Johnson,et al.  Estimating geological CO2 storage security to deliver on climate mitigation , 2018, Nature Communications.

[41]  P. Huybers,et al.  Slow climate mode reconciles historical and model-based estimates of climate sensitivity , 2017, Science Advances.

[42]  Shinichiro Fujimori,et al.  The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals , 2018 .

[43]  S. Managi,et al.  National and Sub-national Policies and Institutions , 2014 .

[44]  Michael Obersteiner,et al.  Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? , 2013 .

[45]  Pallav Purohit,et al.  Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons , 2017 .

[46]  Elena Shevliakova,et al.  Trajectory sensitivity of the transient climate response to cumulative carbon emissions , 2014 .

[47]  F. Creutzig,et al.  The underestimated potential of solar energy to mitigate climate change , 2017, Nature Energy.

[48]  A. Arneth,et al.  Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators , 2017 .

[49]  K. Zickfeld,et al.  Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions , 2014 .

[50]  Axel Michaelowa,et al.  Policy instruments for limiting global temperature rise to 1.5°C – can humanity rise to the challenge? , 2018 .

[51]  S. Searle,et al.  Will energy crop yields meet expectations , 2014 .

[52]  Arnulf Grubler,et al.  Energy technology innovation : learning from historical successes and failures , 2013 .

[53]  E. Hertwich,et al.  Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling , 2017 .

[54]  Felix Creutzig,et al.  Reconciling top-down and bottom-up modelling on future bioenergy deployment , 2012 .

[55]  D. McCollum,et al.  Probabilistic cost estimates for climate change mitigation , 2013, Nature.

[56]  P. Kyle,et al.  Land-use futures in the shared socio-economic pathways , 2017 .

[57]  Pete Smith,et al.  Natural climate solutions , 2017, Proceedings of the National Academy of Sciences.

[58]  P. Kyle,et al.  Climate change effects on agriculture: Economic responses to biophysical shocks , 2013, Proceedings of the National Academy of Sciences.

[59]  Zhenhong Lin,et al.  Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices , 2017 .

[60]  V. Brovkin,et al.  Estimating the near-surface permafrost-carbon feedback on global warming , 2012 .

[61]  A. Markandya,et al.  Assessing regional progress towards a ‘Green Energy Economy’ , 2016 .

[62]  Elmar Kriegler,et al.  Economic mitigation challenges: how further delay closes the door for achieving climate targets , 2013 .

[63]  Julian M. Allwood,et al.  Importance of food-demand management for climate mitigation , 2014 .

[64]  J. Edmonds,et al.  Improved representation of investment decisions in assessments of CO 2 mitigation , 2015 .

[65]  J. Overland,et al.  Ongoing Climate Change in the Arctic , 2011, AMBIO.

[66]  P. Forster,et al.  New use of global warming potentials to compare cumulative and short-lived climate pollutants , 2016 .

[67]  James A. Edmonds,et al.  ECONOMIC AND PHYSICAL MODELING OF LAND USE IN GCAM 3.0 AND AN APPLICATION TO AGRICULTURAL PRODUCTIVITY, LAND, AND TERRESTRIAL CARBON , 2014 .

[68]  K. Calvin,et al.  Low-emission pathways in 11 major economies: comparison of cost-optimal pathways and Paris climate proposals , 2017, Climatic Change.

[69]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[70]  Keywan Riahi,et al.  Differences between carbon budget estimates unravelled , 2016 .

[71]  O. Edenhofer,et al.  Reports of coal’s terminal decline may be exaggerated , 2018 .

[72]  Valentina Bosetti,et al.  Politics and Economics of Second-Best Regulation of Greenhouse Gases: The Importance of Regulatory Credibility , 2010 .

[73]  Michael Greenstone,et al.  Using and improving the social cost of carbon , 2014, Science.

[74]  Michelle Bentham,et al.  CO2 STORage Evaluation Database (CO2 Stored). The UK's online storage atlas , 2014 .

[75]  O. Edelenbosch,et al.  Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies , 2018, Nature Climate Change.

[76]  C. Guivarch,et al.  Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity , 2018 .

[77]  M. Torn,et al.  Ecological limits to terrestrial biological carbon dioxide removal , 2013, Climatic Change.

[78]  P. Patel,et al.  Global scenarios of urban density and its impacts on building energy use through 2050 , 2017, Proceedings of the National Academy of Sciences.

[79]  Julia M. West,et al.  Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage , 2015 .

[80]  Wolfgang Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[81]  G. Luderer,et al.  Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment , 2018 .

[82]  Nihar Shah,et al.  Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning , 2015 .

[83]  H. Herzog,et al.  An Issue of Permanence: Assessing the Effectiveness of Temporary Carbon Storage , 2002 .

[84]  H. Chum,et al.  On the global limits of bioenergy and land use for climate change mitigation , 2017 .

[85]  Stefano Carattini,et al.  Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations , 2017 .

[86]  Jérôme Hilaire,et al.  Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets , 2015 .

[87]  William F. Lamb,et al.  Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios , 2018, Environmental Research Letters.

[88]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[89]  Jens Borken-Kleefeld,et al.  Global anthropogenic emissions of particulate matter including black carbon , 2016 .

[90]  Christoph Schmitz,et al.  Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture , 2015 .

[91]  G. Reinds,et al.  Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. , 2017, The Science of the total environment.

[92]  Robert J. Brecha,et al.  Will economic growth and fossil fuel scarcity help or hinder climate stabilization? , 2016, Climatic Change.

[93]  C. Tebaldi,et al.  What would it take to achieve the Paris temperature targets? , 2016 .

[94]  Steffen Brunner,et al.  Climate finance: A transaction cost perspective on the structure of state-to-state transfers ☆ , 2014 .

[95]  E. Lambin,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Global land use change, economic globalization, and the looming land scarcity , 2011 .

[96]  S. Ogle,et al.  Climate-smart soils , 2016, Nature.

[97]  H. Haberl,et al.  Unexpectedly large impact of forest management and grazing on global vegetation biomass , 2017, Nature.

[98]  Ying Wang,et al.  A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China , 2013 .

[99]  K. Calvin,et al.  Future air pollution in the Shared Socio-economic Pathways , 2017 .

[100]  Phil Williamson,et al.  Emissions reduction: Scrutinize CO2 removal methods , 2016, Nature.

[101]  Priyadarshi R. Shukla,et al.  Low carbon and clean energy scenarios for India: Analysis of targets approach , 2012 .

[102]  Chris Hope,et al.  The marginal impact of CO2 from PAGE2002: An integrated assessment model incorporating the IPCC's five reasons for concern , 2006 .

[103]  R. Sutamihardja,et al.  Mineral carbonation and industrial uses of carbon dioxide , 2005 .

[104]  Elmar Kriegler,et al.  Climate Policy Under Uncertain and Heterogeneous Climate Damages , 2013 .

[105]  I. Gren,et al.  Policy design for forest carbon sequestration: A review of the literature , 2016 .

[106]  S. Davis,et al.  Consumption-based accounting of CO2 emissions , 2010, Proceedings of the National Academy of Sciences.

[107]  Eleanor C. Stokes,et al.  Carbon Lock-In: Types, Causes, and Policy Implications , 2016 .

[108]  Helmut Haberl,et al.  Exploring the biophysical option space for feeding the world without deforestation , 2016, Nature Communications.

[109]  D. Fahey,et al.  Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions , 2015 .

[110]  Milind Kandlikar,et al.  The relative role of trace gas emissions in greenhouse abatement policies , 1995 .

[111]  Keywan Riahi,et al.  2 °C and SDGs: united they stand, divided they fall? , 2016 .

[112]  T. Gutowski,et al.  with less material production Material efficiency: providing material services , 2013 .

[113]  J. Curry,et al.  The implications for climate sensitivity of AR5 forcing and heat uptake estimates , 2015, Climate Dynamics.

[114]  Delavane B. Diaz,et al.  Temperature impacts on economic growth warrant stringent mitigation policy , 2015 .

[115]  Michael J. Walsh,et al.  Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency , 2016 .

[116]  T. Berntsen,et al.  Evaluating the climate and air quality impacts of short-lived pollutants , 2015 .

[117]  Anthony Patt,et al.  Beyond the tragedy of the commons: Reframing effective climate change governance , 2017 .

[118]  P. Forster,et al.  Climate Impacts From a Removal of Anthropogenic Aerosol Emissions , 2018, Geophysical research letters.

[119]  S. Sorrell,et al.  Sociotechnical transitions for deep decarbonization , 2017, Science.

[120]  T. Fæhn,et al.  Diffusion of Climate Technologies in the Presence of Commitment Problems , 2016 .

[121]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[122]  P. Fernandes,et al.  Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol , 2007 .

[123]  Timothy M Lenton,et al.  Environmental tipping points significantly affect the cost−benefit assessment of climate policies , 2015, Proceedings of the National Academy of Sciences.

[124]  Christopher J. Smith,et al.  FAIR v1.3: a simple emissions-based impulse response and carbon cycle model , 2018, Geoscientific Model Development.

[125]  E. Stehfest,et al.  RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C , 2011 .

[126]  F. Joos,et al.  Reversible and irreversible impacts of greenhouse gas emissions in multi-century projects with a comprehensive climate-carbon model , 2009 .

[127]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[128]  Anna Korre,et al.  Recent advances in risk assessment and risk management of geologic CO2 storage , 2015 .

[129]  K. Calvin,et al.  Bioenergy in energy transformation and climate management , 2014, Climatic Change.

[130]  M. Kainuma,et al.  SSP3: AIM implementation of Shared Socioeconomic Pathways , 2017 .

[131]  P. Čapek,et al.  Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils , 2016 .

[132]  Steven W. Running,et al.  Bioenergy: how much can we expect for 2050? , 2013 .

[133]  K. Lackner,et al.  No . 2 CAPTURING CARBON DIOXIDE DIRECTLY FROM THE ATMOSPHERE , 2006 .

[134]  Wolfgang Lucht,et al.  Is extensive terrestrial carbon dioxide removal a ‘green’ form of geoengineering? A global modelling study , 2016 .

[135]  Detlef P. van Vuuren,et al.  Integrated assessment of international climate mitigation commitments outside the UNFCCC , 2018 .

[136]  E. Stehfest,et al.  Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation , 2018 .

[137]  Corinne Le Quéré,et al.  Betting on negative emissions , 2014 .

[138]  Thomas Sterner,et al.  Global warming: Improve economic models of climate change , 2014, Nature.

[139]  Son Kim,et al.  Nuclear energy response in the EMF27 study , 2014, Climatic Change.

[140]  T. Amann,et al.  Potential and costs of carbon dioxide removal by enhanced weathering of rocks , 2018 .

[141]  D. Reiner,et al.  The political economy of negative emissions technologies: consequences for international policy design , 2018 .

[142]  J. Gregory,et al.  Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget , 2017, Proceedings of the National Academy of Sciences.

[143]  S. Beck,et al.  The IPCC and the politics of anticipation , 2017 .

[144]  J. Lowe,et al.  The impact of Earth system feedbacks on carbon budgets and climate response , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[145]  Elmar Kriegler,et al.  Complementing carbon prices with technology policies to keep climate targets within reach , 2015 .

[146]  David W Keith,et al.  Carbon neutral hydrocarbons , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[147]  Derek M Lemoine,et al.  Watch Your Step: Optimal Policy in a Tipping Climate , 2014 .

[148]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[149]  Maria Grahn,et al.  Electrofuels for the transport sector: A review of production costs , 2018 .

[150]  Benjamin Leon Bodirsky,et al.  Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics , 2017 .

[151]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[152]  W. Verstraete,et al.  Decoupling Livestock from Land Use through Industrial Feed Production Pathways. , 2018, Environmental science & technology.

[153]  W. Lucht,et al.  Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C , 2018 .

[154]  S. Kartha,et al.  Land-based negative emissions: risks for climate mitigation and impacts on sustainable development , 2018, International Environmental Agreements: Politics, Law and Economics.

[155]  B. Samset Fast and slow precipitation responses to individual climate forcers : a , 2018 .

[156]  Stefan Bachu,et al.  Review of CO2 storage efficiency in deep saline aquifers , 2015 .

[157]  P. Ciais,et al.  How to spend a dwindling greenhouse gas budget , 2018, Nature Climate Change.

[158]  Jiyong Eom,et al.  Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework , 2014 .

[159]  C. Guivarch,et al.  The transition in energy demand sectors to limit global warming to 1.5 °C , 2018, Energy Efficiency.

[160]  John Barrett,et al.  Drivers, Trends and Mitigation , 2014 .

[161]  Atul K. Jain,et al.  Hotspots of uncertainty in land‐use and land‐cover change projections: a global‐scale model comparison , 2016, Global change biology.

[162]  Bas Eickhout,et al.  Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs , 2007 .

[163]  H. Haberl Competition for land: A sociometabolic perspective , 2015 .

[164]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[165]  D. MacMartin,et al.  Constraints on global temperature target overshoot , 2017, Scientific Reports.

[166]  H. Di,et al.  Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review , 2016, Journal of Soils and Sediments.

[167]  John P. Weyant,et al.  Overview of EMF-21: Multigas Mitigation and Climate Policy , 2006 .

[168]  G. Hegerl,et al.  Detection and attribution of climate change: from global to regional , 2013 .

[169]  D. Victor,et al.  Response of Arctic temperature to changes in emissions of short-lived climate forcers , 2015 .

[170]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[171]  E. Kopits,et al.  Incremental CH4 and N2O mitigation benefits consistent with the US Government's SC-CO2 estimates , 2015 .

[172]  A. Lynch,et al.  Narrative matters for sustainability: the transformative role of storytelling in realizing 1.5°C futures , 2018 .

[173]  Detlef P. van Vuuren,et al.  Exploring the implications of lifestyle change in 2 °C mitigation scenarios using the IMAGE integrated assessment model , 2016 .

[174]  S. Kypreos,et al.  The road to achieving the long-term Paris targets: energy transition and the role of direct air capture , 2017, Climatic Change.

[175]  The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission , 2015 .

[176]  C. Scott,et al.  Substantial large-scale feedbacks between natural aerosols and climate , 2017, Nature Geoscience.

[177]  N. Vaughan,et al.  Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways , 2017 .

[178]  Keywan Riahi,et al.  Chapter 17 - Energy Pathways for Sustainable Development , 2012 .

[179]  Human-Induced Climate Change: Overshoot pathways to CO2 stabilization in a multi-gas context , 2007 .

[180]  Takumi Shidahara,et al.  Saline-aquifer CO2 sequestration in Japan-methodology of storage capacity assessment , 2011 .

[181]  R. Schuiling,et al.  Enhanced Weathering: An Effective and Cheap Tool to Sequester Co2 , 2006 .

[182]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared climate policy assumptions , 2014, Climatic Change.

[183]  Michel G.J. den Elzen,et al.  The key role of forests in meeting climate targets requires science for credible mitigation , 2017 .

[184]  Andreas Oschlies,et al.  Fossil fuels in a trillion tonne world , 2015 .

[185]  B. Elberling,et al.  Circumpolar assessment of permafrost C quality and its vulnerability over time using long‐term incubation data , 2014, Global change biology.

[186]  H. Lotze-Campen,et al.  Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production , 2010 .

[187]  Michael Obersteiner,et al.  Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions , 2013 .

[188]  Jan Christoph Steckel,et al.  Drivers for the renaissance of coal , 2015, Proceedings of the National Academy of Sciences.

[189]  N. Khabarov,et al.  Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs , 2013 .

[190]  Céline Guivarch,et al.  Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions , 2018 .

[191]  D. McCollum,et al.  Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants , 2015 .

[192]  Keywan Riahi,et al.  The relationship between short-term emissions and long-term concentration targets , 2011 .

[193]  A. Arneth,et al.  Terrestrial biogeochemical feedbacks in the climate system , 2010 .

[194]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[195]  Keywan Riahi,et al.  Carbon budgets and energy transition pathways , 2016 .

[196]  S. Rolinski,et al.  Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. , 2016, Environmental science & technology.

[197]  M. Tavoni,et al.  Delayed action and uncertain stabilisation targets. How much will the delay cost? , 2009 .

[198]  P. Janssen,et al.  Progress in the development of vaccines against rumen methanogens. , 2013, Animal : an international journal of animal bioscience.

[199]  N. H. Ravindranath,et al.  Agriculture, Forestry and Other Land Use (AFOLU) , 2014 .

[200]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[201]  Massimo Tavoni,et al.  The Clean Energy R&D Strategy for 2°C , 2013 .

[202]  N. Mahowald,et al.  Aerosol Deposition Impacts on Land and Ocean Carbon Cycles , 2017, Current Climate Change Reports.

[203]  James R. McFarland,et al.  Can Paris pledges avert severe climate change? , 2015, Science.

[204]  J. Curry,et al.  The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity , 2018, Journal of Climate.

[205]  Drew T. Shindell,et al.  The social cost of atmospheric release , 2015, Climatic Change.

[206]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[207]  D. Hauglustaine,et al.  A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate , 2014 .

[208]  C. Zhai,et al.  Long‐term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity , 2015 .

[209]  K. Caldeira,et al.  Greater future global warming inferred from Earth’s recent energy budget , 2017, Nature.

[210]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[211]  R. Knutti,et al.  The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics , 2015, Climatic Change.

[212]  Wolfgang Lutz,et al.  Global Human Capital: Integrating Education and Population , 2011, Science.

[213]  John P. Weyant,et al.  Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison , 2018, Climatic Change.

[214]  William D. Nordhaus,et al.  Warming the World: Economic Models of Global Warming , 2000 .

[215]  P. Moate,et al.  An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production , 2015, Proceedings of the National Academy of Sciences.

[216]  P. Cox,et al.  Emergent constraint on equilibrium climate sensitivity from global temperature variability , 2018, Nature.

[217]  Matthew C. Gerstenberger,et al.  Induced Seismicity; Observations, Risks and Mitigation Measures at CO2 Storage Sites , 2013 .

[218]  E. Schmid,et al.  Climate change mitigation through livestock system transitions , 2014, Proceedings of the National Academy of Sciences.

[219]  G. Luderer,et al.  Assessment of wind and solar power in global low-carbon energy scenarios: An introduction , 2017 .

[220]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[221]  L. K. Gohar,et al.  How difficult is it to recover from dangerous levels of global warming? , 2009 .

[222]  Michel G.J. den Elzen,et al.  Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs , 2010 .

[223]  C. Jones,et al.  Uncertainties in the global temperature change caused by carbon release from permafrost thawing , 2012 .

[224]  Paulina Jaramillo,et al.  Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar , 2017, Proceedings of the National Academy of Sciences.

[225]  Brian C. O'Neill,et al.  The Need for and Use of Socio-Economic Scenarios for Climate Change Analysis , 2012 .

[226]  James H. Williams,et al.  The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues , 2016 .

[227]  James R. McFarland,et al.  OVERVIEW OF THE EMF 32 STUDY ON U.S. CARBON TAX SCENARIOS* , 2018, Climate change economics.

[228]  Pete Smith,et al.  Strategies for feeding the world more sustainably with organic agriculture , 2017, Nature Communications.

[229]  S. Fankhauser,et al.  Where are the gaps in climate finance? , 2016 .

[230]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[231]  D. Vuuren,et al.  Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model , 2015 .

[232]  T. Koljonen,et al.  Pathways to Post-fossil Economy in a Well Below 2 ℃ World , 2018 .

[233]  Christian Breyer,et al.  On the role of solar photovoltaics in global energy transition scenarios , 2016 .

[234]  K. R. Arrigo,et al.  Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean , 2008, Science.

[235]  Glen P. Peters,et al.  Warning signs for stabilizing global CO2 emissions , 2017 .

[236]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[237]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[238]  H. Tuomisto,et al.  Environmental impacts of cultured meat production. , 2011, Environmental science & technology.

[239]  Wallace S. Broecker,et al.  Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions , 2016, Science.

[240]  J. Eom,et al.  Technological Forecasting & Social Change Carbon lock-in through capital stock inertia associated with weak near-term climate policies , 2014 .

[241]  Jesus Crespo Cuaresma,et al.  Income projections for climate change research: A framework based on human capital dynamics , 2017 .

[242]  Christoph Schmitz,et al.  Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns , 2016 .

[243]  Jan Christoph Steckel,et al.  Feasible mitigation actions in developing countries , 2014 .

[244]  Helmut Haberl,et al.  Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields , 2011, Biomass & bioenergy.

[245]  W. Lucht,et al.  Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations , 2016 .

[246]  E. Chu,et al.  Political feasibility of 1.5°C societal transformations: the role of social justice , 2018 .

[247]  P. Ciais,et al.  Quantifying uncertainties of permafrost carbon–climate feedbacks , 2017 .

[248]  V. Duscha,et al.  Achievability of the Paris targets in the EU—the role of demand-side-driven mitigation in different types of scenarios , 2019 .

[249]  L. Clarke,et al.  Assessing Transformation Pathways , 2014 .

[250]  Sergey Paltsev,et al.  Developing a Consistent Database for Regional Geologic CO2 Storage Capacity Worldwide , 2017 .

[251]  L. Verchot,et al.  Global Sequestration Potential of Increased Organic Carbon in Cropland Soils , 2017, Scientific Reports.

[252]  Richard S. J. Tol,et al.  Counting only the hits? The risk of underestimating the costs of stringent climate policy , 2010 .

[253]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[254]  Nicholas Stern,et al.  Current climate models are grossly misleading , 2016 .

[255]  Niall Mac Dowell,et al.  Slicing the pie: how big could carbon dioxide removal be? , 2017 .

[256]  Richard S. J. Tol,et al.  The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND , 2009 .

[257]  Cornie Huizenga,et al.  Decarbonising transport to achieve Paris Agreement targets , 2019 .

[258]  Lena Neij,et al.  Transaction costs analysis of low-carbon technologies , 2013 .

[259]  H. Matthews,et al.  Climate response to zeroed emissions of greenhouse gases and aerosols , 2012 .

[260]  H. Steinfeld,et al.  Tackling climate change through livestock : a global assessment of emissions and mitigation opportunities , 2013 .

[261]  M. Strubegger,et al.  Energy sector water use implications of a 2 °C climate policy , 2016 .

[262]  David W. Keith,et al.  Bury, Burn or Both: A Two-for-One Deal on Biomass Carbon and Energy , 2002 .

[263]  M. Strubegger,et al.  Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives , 2017 .

[264]  Keigo Akimoto,et al.  GHG emission pathways until 2300 for the 1.5 °C temperature rise target and the mitigation costs achieving the pathways , 2018, Mitigation and Adaptation Strategies for Global Change.

[265]  N. Nakicenovic,et al.  Biophysical and economic limits to negative CO2 emissions , 2016 .

[266]  M. Sarofim,et al.  Valuing the Ozone-Related Health Benefits of Methane Emission Controls , 2017 .

[267]  Page Kyle,et al.  Trade-offs of different land and bioenergy policies on the path to achieving climate targets , 2014, Climatic Change.

[268]  Marilyn A Brown,et al.  Carbon pricing and energy efficiency: pathways to deep decarbonization of the US electric sector , 2018, Energy Efficiency.

[269]  C. Jones,et al.  Can reducing black carbon and methane below RCP2.6 levels keep global warming below 1.5 °C? , 2018 .

[270]  Ruben Juanes,et al.  Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers , 2014 .

[271]  K. Calvin,et al.  A multi-model assessment of the co-benefits of climate mitigation for global air quality , 2016 .

[272]  M. Kainuma,et al.  An emission pathway for stabilization at 6 Wm−2 radiative forcing , 2011 .

[273]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[274]  G. Peters,et al.  The trouble with negative emissions , 2016, Science.

[275]  R. Knutti,et al.  Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings , 2015 .

[276]  G. Hegerl,et al.  Beyond equilibrium climate sensitivity , 2017 .

[277]  Antonio Trabucco,et al.  Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets , 2016, Scientific Reports.

[278]  S. Ogle,et al.  Management swing potential for bioenergy crops , 2013 .

[279]  N. H. Ravindranath,et al.  Bioenergy and climate change mitigation: an assessment , 2015 .

[280]  Nathan Lewis,et al.  Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs , 2011 .

[281]  Stefan Frank,et al.  Reducing greenhouse gas emissions in agriculture without compromising food security? , 2017 .

[282]  N. H. Ravindranath,et al.  How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? , 2013, Global change biology.

[283]  Edgar G. Hertwich,et al.  Integrating Global Climate Change Mitigation Goals with Other Sustainability Objectives: A Synthesis , 2015 .

[284]  Solomon Hsiang,et al.  Estimating economic damage from climate change in the United States , 2017, Science.

[285]  Emanuele Borgonovo,et al.  Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways , 2017 .

[286]  C. Biasi,et al.  Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw , 2017, Proceedings of the National Academy of Sciences.

[287]  Luis Gomez-Echeverri,et al.  Cross-cutting Investment and Finance Issues , 2014 .

[288]  W. Nordhaus Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches , 2014, Journal of the Association of Environmental and Resource Economists.

[289]  Emanuele Borgonovo,et al.  Sensitivity to energy technology costs: a multi-model comparison analysis. , 2015 .

[290]  Veerabhadran Ramanathan,et al.  Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes , 2017, Proceedings of the National Academy of Sciences.

[291]  Tomoko Hasegawa,et al.  Emission pathways to achieve 2.0°C and 1.5°C climate targets , 2017 .

[292]  K. Riahi,et al.  The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century , 2017 .

[293]  Jan Christoph Steckel,et al.  Implications of climate change mitigation for sustainable development , 2016 .

[294]  T. Andrews,et al.  Variation in climate sensitivity and feedback parameters during the historical period , 2016 .

[295]  Mikel González-Eguino,et al.  New Coal-Fired Plants Jeopardise Paris Agreement , 2017 .

[296]  G. Luderer,et al.  Is atmospheric carbon dioxide removal a game changer for climate change mitigation? , 2013, Climatic Change.

[297]  Pete Smith Soil carbon sequestration and biochar as negative emission technologies , 2016, Global change biology.

[298]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[299]  Benjamin Leon Bodirsky,et al.  Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios , 2014 .

[300]  T. Rutherford,et al.  The Paris Agreement and next steps in limiting global warming , 2017, Climatic Change.

[301]  Henri Safa,et al.  How much can nuclear energy do about global warming , 2017 .

[302]  J. Mülmenstädt,et al.  Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015 , 2017 .

[303]  Carbon Taxes vs. Cap and Trade: A Critical Review , 2013 .

[304]  J. Canadell,et al.  Managing Forests for Climate Change Mitigation , 2008, Science.

[305]  M. Meinshausen,et al.  Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity , 2014 .

[306]  Keywan Riahi,et al.  Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals , 2018, Nature Energy.

[307]  William F. Lamb,et al.  Negative emissions—Part 2: Costs, potentials and side effects , 2018 .

[308]  James H. Williams,et al.  The need for national deep decarbonization pathways for effective climate policy , 2016 .

[309]  B. Johansson,et al.  Governing low-carbon energy transitions in sustainable ways: Potential synergies and conflicts between climate and environmental policy objectives , 2016 .

[310]  John L. Bradshaw,et al.  CO2 storage capacity estimation: Methodology and gaps , 2007 .

[311]  Satish Kumar,et al.  Meat Analogues: Plant based alternatives to meat products- A review , 2015 .

[312]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[313]  Sanghyun Hong,et al.  Global zero-carbon energy pathways using viable mixes of nuclear and renewables , 2015 .

[314]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[315]  H. Matthews,et al.  On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions , 2016 .

[316]  Pete Smith,et al.  Research priorities for negative emissions , 2016 .

[317]  Keywan Riahi,et al.  Zero emission targets as long-term global goals for climate protection , 2015 .

[318]  Christoph Schmitz,et al.  Trading more food: Implications for land use, greenhouse gas emissions, and the food system , 2012 .

[319]  G. Luderer,et al.  Energy system transformations for limiting end-of-century warming to below 1.5 °C , 2015 .

[320]  Wei Liu,et al.  Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis , 2017 .

[321]  Structural change as a key component for agricultural non-CO2 mitigation efforts , 2018, Nature Communications.

[322]  Sonia Yeh,et al.  Detailed assessment of global transport-energy models’ structures and projections , 2017 .

[323]  S. Rolinski,et al.  N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios , 2012 .

[324]  Christian von Hirschhausen,et al.  Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS) , 2017 .

[325]  M. Tavoni,et al.  Direct air capture of CO2 and climate stabilization: A model based assessment , 2013, Climatic Change.

[326]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[327]  M. Allen,et al.  A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation , 2018, npj Climate and Atmospheric Science.

[328]  F. Ackerman,et al.  Climate Risks and Carbon Prices: Revising the Social Cost of Carbon , 2012 .

[329]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[330]  G. Luderer,et al.  Pathways limiting warming to 1.5°C: a tale of turning around in no time? , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[331]  Christoph Schmitz,et al.  Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution , 2014, Nature Communications.

[332]  Carlos Cardoso,et al.  Microalgae as feed ingredients for livestock production and meat quality: A review , 2017 .