Exploring the Structure of Spatial Representations

It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory.

[1]  Xiaojin Zhu,et al.  Human Semi-Supervised Learning , 2013, Top. Cogn. Sci..

[2]  Michael A. Motes,et al.  Individual differences in the representations of novel environments , 2005 .

[3]  B Hommel,et al.  Hierarchical coding in the perception and memory of spatial layouts , 2000, Psychological research.

[4]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[5]  Andrew P. Duchon,et al.  Do Humans Integrate Routes Into a Cognitive Map? Map- Versus Landmark-Based Navigation of Novel Shortcuts , 2005 .

[6]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[7]  S. Becker,et al.  One spatial map or many? Spatial coding of connected environments. , 2014, Journal of experimental psychology. Learning, memory, and cognition.

[8]  Christian F. Doeller,et al.  Memory hierarchies map onto the hippocampal long axis in humans , 2015, Nature Neuroscience.

[9]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[10]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[11]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[12]  D. Waller,et al.  Micro- and macroreference frames: Specifying the relations between spatial categories in memory. , 2010, Journal of experimental psychology. Learning, memory, and cognition.

[13]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[14]  Sang Ah Lee,et al.  Beyond Core Knowledge: Natural Geometry , 2010, Cogn. Sci..

[15]  Marinos Kavouras,et al.  A method for the formalization and integration of geographical categorizations , 2002, Int. J. Geogr. Inf. Sci..

[16]  G. Celeux,et al.  Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition , 1996 .

[17]  Steven M. Weisberg,et al.  Journal of Experimental Psychology : Learning , Memory , and Cognition Variations in Cognitive Maps : Understanding Individual Differences in Navigation , 2013 .

[18]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[19]  Timothy P. McNamara,et al.  Systems of Spatial Reference in Human Memory , 2001, Cognitive Psychology.

[20]  David D. Cox,et al.  Opinion TRENDS in Cognitive Sciences Vol.11 No.8 Untangling invariant object recognition , 2022 .

[21]  Naoyuki Sato,et al.  Spatial-area selective retrieval of multiple object–place associations in a hierarchical cognitive map formed by theta phase coding , 2008, Cognitive Neurodynamics.

[22]  William H Warren,et al.  Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. , 2010, Journal of experimental psychology. Learning, memory, and cognition.

[23]  Jean-Arcady Meyer,et al.  Animat navigation using a cognitive graph , 1998, Biological Cybernetics.

[24]  Yoonsuck Choe,et al.  Second Order Isomorphism: A Reinterpretation and Its Implications in Brain and Cognitive Sciences , 2019, Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society.

[25]  T. McNamara,et al.  Intrinsic frames of reference in spatial memory. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[26]  Nectaria Tryfona,et al.  Structuring Space with Image Schemata: Wayfinding in Airports as a Case Study , 1997, COSIT.

[27]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[28]  Carol S. Holding,et al.  Further evidence for the hierarchical representation of spatial information , 1994 .

[29]  Erricos John Kontoghiorghes,et al.  Handbook of Computational Econometrics , 2009 .

[30]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[31]  Tobias Meilinger,et al.  Local and Global Reference Frames for Environmental Spaces , 2014, Quarterly journal of experimental psychology.

[32]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[33]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[34]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[35]  Judith S Reitman,et al.  Organization revealed by recall orders and confirmed by pauses , 1980, Cognitive Psychology.

[36]  E. Moser,et al.  A manifold of spatial maps in the brain , 2010, Trends in Cognitive Sciences.

[37]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[38]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[39]  T. McNamara Mental representations of spatial relations , 1986, Cognitive Psychology.

[41]  Andrew U. Frank,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1993, Lecture Notes in Computer Science.

[42]  P. Dudchenko The hippocampus as a cognitive map , 2010 .

[43]  D. R. Montello,et al.  Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places , 2006, Cognitive Psychology.

[44]  D. Stea Cognitive Maps in Rats and Men , 2017 .

[45]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[46]  Xiaoli Chen,et al.  Object-centered reference systems and human spatial memory , 2011, Psychonomic bulletin & review.

[47]  Bernhard Nebel,et al.  Spatial Cognition IV, Reasoning, Action, Interaction , 2008 .

[48]  C. T. Kelley,et al.  A Locally-Biased form of the DIRECT Algorithm , 2001, J. Glob. Optim..

[49]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[50]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[51]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[52]  Alexander J. Smola,et al.  Learning the Kernel with Hyperkernels , 2005, J. Mach. Learn. Res..

[53]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[54]  Thomas Reineking,et al.  Efficient Wayfinding in Hierarchically Regionalized Spatial Environments , 2008, Spatial Cognition.

[55]  Andrea Klug,et al.  The Hippocampus Book , 2016 .

[56]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[57]  Thomas L. Griffiths,et al.  A more rational model of categorization , 2006 .

[58]  Todd M. Gureckis,et al.  CUNY Academic , 2016 .

[59]  Horatiu Voicu,et al.  Hierarchical cognitive maps , 2003, Neural Networks.

[60]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[61]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[62]  Wolfram Burgard,et al.  Conceptual spatial representations for indoor mobile robots , 2008, Robotics Auton. Syst..

[63]  Stéphane Donikian,et al.  A Spatial Cognitive Map and a Human-Like Memory Model Dedicated to Pedestrian Navigation in Virtual Urban Environments , 2006, Spatial Cognition.

[64]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[65]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[66]  Neil Burgess,et al.  A metric for the cognitive map: found at last? , 2006, Trends in Cognitive Sciences.

[67]  Stephen C. Hirtle,et al.  Representational Structures for Cognitive Space: Trees, Ordered Trees and Semi-Lattices , 1995, COSIT.

[68]  Rong Jin,et al.  Approximate kernel k-means: solution to large scale kernel clustering , 2011, KDD.

[69]  Gillian Cohen,et al.  Hierarchical models in cognition: Do they have psychological reality? , 2000 .

[70]  Steven A. Marchette,et al.  Object Properties and Frame of Reference in Spatial Memory Representations , 2010, Spatial Cogn. Comput..

[71]  Moshe Naveh-Benjamin,et al.  Inferring students' cognitive structures and their development using the "ordered tree technique." , 1986 .

[72]  Ke Chen,et al.  Computational cognitive models of spatial memory in navigation space: A review , 2015, Neural Networks.

[73]  Lawrence Philips,et al.  The double metaphone search algorithm , 2000 .

[74]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[75]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[76]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[77]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[78]  Thomas L. Griffiths,et al.  Modeling Transfer Learning in Human Categorization with the Hierarchical Dirichlet Process , 2010, ICML.

[79]  Francis T. Durso,et al.  Recall and Measures of Memory Organization , 1986 .

[80]  Peter Gärdenfors,et al.  Proceedings of the international conference on Spatial Cognition VI: Learning, Reasoning, and Talking about Space , 2008 .

[81]  Adam N. Sanborn,et al.  Unifying rational models of categorization via the hierarchical Dirichlet process , 2019 .

[82]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[83]  S. Becker,et al.  Remembering the past and imagining the future: a neural model of spatial memory and imagery. , 2007, Psychological review.

[84]  J. Pine,et al.  Chunking mechanisms in human learning , 2001, Trends in Cognitive Sciences.

[85]  R. Shepard,et al.  Second-order isomorphism of internal representations: Shapes of states ☆ , 1970 .

[86]  Naoyuki Sato,et al.  Online formation of a hierarchical cognitive map for object–place association by theta phase coding , 2005, Hippocampus.

[87]  Ahmed Khorsi On morphological relatedness , 2013, Nat. Lang. Eng..

[88]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[89]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[90]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[91]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[92]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[93]  T. McNamara,et al.  Intrinsic frames of reference in spatial memory , 2002 .

[94]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[95]  Hanspeter A. Mallot,et al.  Navigation and Acquisition of Spatial Knowledge in a Virtual Maze , 1998, Journal of Cognitive Neuroscience.

[96]  Amar Cheema,et al.  Data collection in a flat world: the strengths and weaknesses of mechanical turk samples , 2013 .

[97]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[98]  RU Muller,et al.  The hippocampus as a cognitive graph , 1996, The Journal of general physiology.

[99]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[100]  N. Nachar The Mann ‐ Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution , 2007 .

[101]  Erik B. Sudderth,et al.  Memoized Online Variational Inference for Dirichlet Process Mixture Models , 2013, NIPS.

[102]  Mahdieh Soleymani Baghshah,et al.  Kernel-based metric learning for semi-supervised clustering , 2010, Neurocomputing.

[103]  Tobias Meilinger,et al.  The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps , 2008, Spatial Cognition.

[104]  Kate J. Jeffery Distorting the metric fabric of the cognitive map , 2015, Trends in Cognitive Sciences.

[105]  R. Shepard Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space , 1957 .

[106]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[107]  T. McNamara,et al.  Egocentric and geocentric frames of reference in memory of large-scale space , 2003, Psychonomic bulletin & review.

[108]  A. Bennett,et al.  Do animals have cognitive maps? , 1996, The Journal of experimental biology.

[109]  Hanspeter A. Mallot,et al.  'Fine-to-Coarse' Route Planning and Navigation in Regionalized Environments , 2003, Spatial Cogn. Comput..

[110]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[111]  T. McNamara,et al.  Subjective hierarchies in spatial memory. , 1989, Journal of experimental psychology. Learning, memory, and cognition.

[112]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[113]  Arne D. Ekstrom,et al.  Why vision is important to how we navigate , 2015, Hippocampus.

[114]  J. Gower Generalized procrustes analysis , 1975 .

[115]  J. Jonides,et al.  Evidence of hierarchies in cognitive maps , 1985, Memory & cognition.