A molecular computing approach to solving optimization problems via programmable microdroplet arrays

Summary The search for novel forms of computing to the dominant von Neumann model-based approach is important as it will enable different classes of problems to be solved. Molecular computers are a promising alternative to semiconductor-based computers given their potential biocompatibility and cost advantages. The vast space of chemical reactions makes molecules a tunable, scalable, and energy-efficient computational vehicle. In molecular computers, memory and processing units can be combined into a single, inherently parallelized device. Here, we present a microdroplet array molecular computer to solve combinatorial optimization problems by employing an Ising Hamiltonian to map problems heuristically to droplet-droplet interactions. The droplets represent binary digits and problems are encoded in intra- and inter-droplet reactions. We propose two implementations: first, a hybrid classical-molecular computer that enforces inter-droplet constraints in a classical computer and, second, a purely molecular computer where the problem is entirely pre-programmed in the nearest-neighbor droplet reactions.

[1]  Erik Winfree,et al.  Diverse and robust molecular algorithms using reprogrammable DNA self-assembly , 2019, Nature.

[2]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[3]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[4]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[5]  Huaiyu Mi,et al.  Ontologies and Standards in Bioscience Research: For Machine or for Human , 2010, Front. Physio..

[6]  P. Levkin,et al.  Droplet Microarrays: From Surface Patterning to High‐Throughput Applications , 2018, Advanced materials.

[7]  Evgeny Katz,et al.  Molecular and Supramolecular Information Processing , 2012 .

[8]  Rob Phillips,et al.  Combinatorial Control through Allostery , 2018, bioRxiv.

[9]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[10]  Andrew Adamatzky,et al.  Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  D T Chiu,et al.  Using three-dimensional microfluidic networks for solving computationally hard problems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Hayato Goto,et al.  Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems , 2019, Science Advances.

[13]  Gang Liu,et al.  Redox gated polymer memristive processing memory unit , 2019, Nature Communications.

[14]  I. Peretz,et al.  Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization , 2016, Scientific Reports.

[15]  Frits W. Vaandrager,et al.  Encoding information into polymers , 2018, Nature Reviews Chemistry.

[16]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[17]  Jonas Einarsson,et al.  New biological device not faster than regular computer , 2016, Proceedings of the National Academy of Sciences.

[18]  Alán Aspuru-Guzik,et al.  Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.

[19]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[20]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Dan V. Nicolau,et al.  Parallel computation with molecular-motor-propelled agents in nanofabricated networks , 2016, Proceedings of the National Academy of Sciences.

[22]  Oscar Ces,et al.  Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways , 2014, Nature Communications.

[23]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[24]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[25]  Rupak Biswas,et al.  Readiness of Quantum Optimization Machines for Industrial Applications , 2017, Physical Review Applied.

[26]  Dan V. Nicolau,et al.  Reply to Einarsson: The computational power of parallel network exploration with many bioagents , 2016, Proceedings of the National Academy of Sciences.

[27]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[28]  Kazutaka Takahashi Bifurcation-Based Quantum Annealing with Nested Spins , 2020, Journal of the Physical Society of Japan.

[29]  Nicolas P. D. Sawaya,et al.  Excitonics: A Set of Gates for Molecular Exciton Processing and Signaling. , 2018, ACS nano.

[30]  Daniel A. Lidar,et al.  Analog errors in quantum annealing: doom and hope , 2019, npj Quantum Information.

[31]  Michael Conrad,et al.  On design principles for a molecular computer , 1985, CACM.

[32]  Kevin Burgess,et al.  Fluorescent indicators for intracellular pH. , 2010, Chemical reviews.

[33]  Song-Ju Kim,et al.  Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism , 2018, Royal Society Open Science.

[34]  Siddhartha Ghosh,et al.  Analog Coupled Oscillator Based Weighted Ising Machine , 2019, Scientific Reports.

[35]  Helmut G. Katzgraber,et al.  A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.

[36]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[37]  Aidan Roy,et al.  Next-Generation Topology of D-Wave Quantum Processors , 2020, 2003.00133.

[38]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[39]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[40]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[41]  H. Bayley,et al.  Functional aqueous droplet networks. , 2017, Molecular bioSystems.

[42]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[43]  Leroy Cronin,et al.  A programmable chemical computer with memory and pattern recognition , 2020, Nature Communications.

[44]  Jaijeet S. Roychowdhury,et al.  Oscillator-based Ising Machine , 2017, ArXiv.

[45]  Hayato Goto Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network , 2015, Scientific Reports.

[46]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[47]  Chi-Sang Poon,et al.  Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities , 2011, Front. Neurosci..

[48]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[49]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[50]  Monpichar Srisa-Art,et al.  Microdroplets: a sea of applications? , 2008, Lab on a chip.

[51]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[52]  Evgeny Katz,et al.  Biomolecular Information Processing , 2012 .

[53]  Ken-ichi Kawarabayashi,et al.  Experimental investigation of performance differences between coherent Ising machines and a quantum annealer , 2018, Science Advances.

[54]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[55]  Carmen Peinado,et al.  Fluorescent probes for sensing processes in polymers. , 2005, Chemistry.

[56]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[57]  Jaijeet S. Roychowdhury,et al.  OIM: Oscillator-based Ising Machines for Solving Combinatorial Optimisation Problems , 2019, UCNC.

[58]  Brian Hayes,et al.  CAN’T GET NO SATISFACTION , 1997 .

[59]  Toshiyuki Miyazawa,et al.  Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer , 2018, Front. Phys..

[60]  M. Jakovljevic,et al.  Long Term Dental Work Force Build-Up and DMFT-12 Improvement in the European Region , 2016, Front. Physiol..

[61]  Hong-Chiang Chang,et al.  Comparison of Multipulse Laser Vaporesection versus Plasmakinetic Resection for Treatment of Benign Prostate Obstruction , 2019, Scientific Reports.

[62]  Itay Hen,et al.  Analog errors in Ising machines , 2018, Quantum Science and Technology.

[63]  Guilhem Semerjian,et al.  The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective , 2012, ArXiv.

[64]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[65]  Riley J. Hickman,et al.  Optical monitoring of polymerizations in droplets with high temporal dynamic range , 2020, Chemical science.

[66]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[67]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[68]  Daniel A. Lidar,et al.  Nested quantum annealing correction , 2015, npj Quantum Information.