Synthesis of indoor maps in presence of uncertainty

Abstract A robotic system is presented, which is able to autonomously explore unengineered indoor environments, thereby synthesising maps suitable for planning and navigation purposes. Map recovery takes place through interaction between the robot and the world, in which either sensing and acting are affected by uncertainty. Kalman filtering is applied to maintain position best estimates, which are then fused with data coming from the observation of landmarks. The proposed method has been implemented on a robot equipped with ultrasonic range finders, and tested in a fairly simple, real environment.

[1]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..

[2]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Chih-Ming Wang Location Estimation and Uncertainty Analysis for Mobile Robots , 1990, Autonomous Robot Vehicles.

[5]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[6]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.

[7]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[8]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..

[9]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .

[10]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[11]  Benjamin Kuipers,et al.  Modeling Spatial Knowledge , 1978, IJCAI.

[12]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[13]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[14]  D. Miller,et al.  A spatial representation system for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[15]  Tomaso Poggio,et al.  A project for an intelligent system: Vision and learning , 1992 .

[16]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[17]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[18]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[19]  Kenneth Basye,et al.  Graph-based mapping by mobile robots , 1993, Other Conferences.

[20]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[21]  Kenneth Basye,et al.  Map Learning with Indistinguishable Locations , 1989, UAI.

[22]  Gianni A. Di Caro,et al.  Bridging the gap between planning and reactivity: a layered architecture for autonomous indoor navigation , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[23]  Michael Jenkin,et al.  Robotic exploration as graph construction , 1991, IEEE Trans. Robotics Autom..

[24]  Leslie Pack Kaelbling,et al.  Uncertainty in Graph-Based Map Learning , 1993 .

[25]  Sridhar Mahadevan,et al.  Robot Learning , 1993 .

[26]  John Canny,et al.  Simplified Voronoi diagrams , 1988, Discret. Comput. Geom..