Deep Learning-Based Weather Prediction: A Survey

[1]  Eduardo S. Ogasawara,et al.  STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for Weather Forecasting , 2019, Neurocomputing.

[2]  Gr'egoire Jauvion,et al.  PlumeNet: Large-Scale Air Quality Forecasting Using A Convolutional LSTM Network , 2020, ArXiv.

[3]  Jason Hickey,et al.  MetNet: A Neural Weather Model for Precipitation Forecasting , 2020, ArXiv.

[4]  Yifan Zhang,et al.  Feature selection may improve deep neural networks for the bioinformatics problems , 2019, Bioinform..

[5]  Jason Hickey,et al.  Machine Learning for Precipitation Nowcasting from Radar Images , 2019, ArXiv.

[6]  Jan Nedoma,et al.  A Weather Forecast Model Accuracy Analysis and ECMWF Enhancement Proposal by Neural Network , 2019, Sensors.

[7]  Mingguo Zhao,et al.  Towards artificial general intelligence with hybrid Tianjic chip architecture , 2019, Nature.

[8]  Chao Yang,et al.  A hybrid CNN-LSTM model for typhoon formation forecasting , 2019, GeoInformatica.

[9]  Juan Zhao,et al.  PAGCM: A scalable parallel spectral‐based atmospheric general circulation model , 2019, Concurr. Comput. Pract. Exp..

[10]  Maik Heistermann,et al.  Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1) , 2019, Geoscientific Model Development.

[11]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[12]  Bin Wang,et al.  Deep Uncertainty Quantification: A Machine Learning Approach for Weather Forecasting , 2018, KDD.

[13]  Lukás Burget,et al.  Analysis of DNN Speech Signal Enhancement for Robust Speaker Recognition , 2018, Comput. Speech Lang..

[14]  C. Wang,et al.  Application of Spatiotemporal Predictive Learning in Precipitation Nowcasting , 2018 .

[15]  Taiji Suzuki,et al.  Short-term local weather forecast using dense weather station by deep neural network , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[16]  Kuo-Ming Chao,et al.  Dynamic fine-tuning stacked auto-encoder neural network for weather forecast , 2018, Future Gener. Comput. Syst..

[17]  Sebastian Scher,et al.  Toward Data‐Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model With Deep Learning , 2018, Geophysical Research Letters.

[18]  J. Randerson,et al.  Plant Physiological Responses to Rising CO2 Modify Simulated Daily Runoff Intensity With Implications for Global‐Scale Flood Risk Assessment , 2018, Geophysical Research Letters.

[19]  Johan A. K. Suykens,et al.  Spatio-temporal Stacked LSTM for Temperature Prediction in Weather Forecasting , 2018, ArXiv.

[20]  Peter Bauer,et al.  Challenges and design choices for global weather and climate models based on machine learning , 2018, Geoscientific Model Development.

[21]  Pierre Gentine,et al.  Could Machine Learning Break the Convection Parameterization Deadlock? , 2018, Geophysical Research Letters.

[22]  Pierre Gentine,et al.  Deep learning to represent subgrid processes in climate models , 2018, Proceedings of the National Academy of Sciences.

[23]  Donald D. Lucas,et al.  Machine Learning Predictions of a Multiresolution Climate Model Ensemble , 2018 .

[24]  Philip S. Yu,et al.  PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning , 2018, ICML.

[25]  Sanjeev Khudanpur,et al.  X-Vectors: Robust DNN Embeddings for Speaker Recognition , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  Shuai Li,et al.  Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Lei Guo,et al.  When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Patrick Gallinari,et al.  Deep learning for physical processes: incorporating prior scientific knowledge , 2017, ICLR.

[29]  Prabhat,et al.  Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC , 2017, Journal of Physics: Conference Series.

[30]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[31]  Philip S. Yu,et al.  PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs , 2017, NIPS.

[32]  Weiguo Liu,et al.  Redesigning CAM-SE for Peta-Scale Climate Modeling Performance and Ultra-High Resolution on Sunway TaihuLight , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[33]  Ke Zhang,et al.  A Short-Term Rainfall Prediction Model Using Multi-task Convolutional Neural Networks , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[34]  Dit-Yan Yeung,et al.  Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model , 2017, NIPS.

[35]  Guangwen Yang,et al.  swDNN: A Library for Accelerating Deep Learning Applications on Sunway TaihuLight , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[36]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[37]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[38]  Athos Agapiou,et al.  Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications , 2017, Int. J. Digit. Earth.

[39]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[40]  S. Oeljeklaus,et al.  The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins , 2016, Nature Communications.

[41]  Prabhat,et al.  ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events , 2016, NIPS.

[42]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[43]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[44]  Tobias Günther,et al.  Visualization of Neural Network Predictions for Weather Forecasting , 2018, VMV.

[45]  Eric Guilyardi,et al.  Towards improved and more routine Earth system model evaluation in CMIP , 2016 .

[46]  Prabhat,et al.  Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets , 2016, ArXiv.

[47]  Gang Wang,et al.  NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Baskar Ganapathysubramanian,et al.  Hierarchical Feature Extraction for Efficient Design of Microfluidic Flow Patterns , 2015, FE@NIPS.

[50]  Soon Hock Ng,et al.  Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection , 2015, Nature Communications.

[51]  Jürgen Kurths,et al.  Identifying causal gateways and mediators in complex spatio-temporal systems , 2015, Nature Communications.

[52]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[53]  Surendra Byna,et al.  TECA: Petascale Pattern Recognition for Climate Science , 2015, CAIP.

[54]  Eric Horvitz,et al.  A Deep Hybrid Model for Weather Forecasting , 2015, KDD.

[55]  Sushil J. Louis,et al.  Forecasting the weather of Nevada: A deep learning approach , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[56]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[57]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[58]  Roland Memisevic,et al.  The Potential Energy of an Autoencoder , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Geoffrey E. Hinton,et al.  A Simple Way to Initialize Recurrent Networks of Rectified Linear Units , 2015, ArXiv.

[60]  A. P. Siebesma,et al.  Clouds, circulation and climate sensitivity , 2015 .

[61]  Nitish Srivastava,et al.  Unsupervised Learning of Video Representations using LSTMs , 2015, ICML.

[62]  Marcus Rohrbach,et al.  Translating Videos to Natural Language Using Deep Recurrent Neural Networks , 2014, NAACL.

[63]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[64]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Yu-Lin He,et al.  Deep Neural Network Modeling for Big Data Weather Forecasting , 2015 .

[67]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.

[68]  Pak Wai Chan,et al.  Deep neural network based feature representation for weather forecasting , 2014 .

[69]  Chao Yang,et al.  Enabling and Scaling a Global Shallow-Water Atmospheric Model on Tianhe-2 , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[70]  B. Santer,et al.  Statistical significance of climate sensitivity predictors obtained by data mining , 2014 .

[71]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[72]  Hui Xiong,et al.  Introduction to special section on intelligent mobile knowledge discovery and management systems , 2013, ACM Trans. Intell. Syst. Technol..

[73]  S. Bony,et al.  What Are Climate Models Missing? , 2013, Science.

[74]  Robert Pincus,et al.  Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward the real world , 2013 .

[75]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[76]  James Nga-Kwok Liu,et al.  Application of feature-weighted Support Vector regression using grey correlation degree to stock price forecasting , 2012, Neural Computing and Applications.

[77]  David S. Nolan,et al.  Tropical cyclogenesis in wind shear: Climatological relationships and physical processes , 2012 .

[78]  Yoshua Bengio,et al.  Deep Learning of Representations for Unsupervised and Transfer Learning , 2011, ICML Unsupervised and Transfer Learning.

[79]  Pierre Baldi,et al.  Autoencoders, Unsupervised Learning, and Deep Architectures , 2011, ICML Unsupervised and Transfer Learning.

[80]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[81]  Surendra Byna,et al.  TECA: A Parallel Toolkit for Extreme Climate Analysis , 2012, ICCS.

[82]  Nitesh V. Chawla,et al.  Comparing Predictive Power in Climate Data: Clustering Matters , 2011, SSTD.

[83]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[84]  G. North,et al.  Empirical Orthogonal Functions: The Medium is the Message , 2009 .

[85]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[86]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[87]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[88]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[89]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[90]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[91]  Xizhao Wang,et al.  Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment , 2004, KES.

[92]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[93]  B. Golding Mesoscale meteorological modelling. By R. A. Pielke Sr. Academic Press. Second edition 2002. xvi+676 pp. ISBN 0 12 554766 8. , 2002 .

[94]  Ajith Abraham,et al.  Performance analysis of connectionist paradigms for modeling chaotic behavior of stock indices , 2002 .

[95]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[96]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[97]  Guriĭ Ivanovich Marchuk,et al.  Numerical Methods in Weather Prediction , 1974 .