Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers

C.C. acknowledges financial support from ECoProbe (DFF – 4005-00129) funded by the Danish Independent Research Council. C.G. and M.B.M. acknowledge financial support from Energinet.dk through the ForskEL programme Solid Oxide Fuel Cells for the Renewable Energy Transition contract no. 2014-1-12231. J.T.S.I., M.C.V. and D.N. acknowledge support from EPSRC Platform Grant EP/K015540/1, EPSRC Tailoring of microstructural evolution in impregnated SOFC electrodes EP/M014304/1 and Royal Society Wolfson Merit Award WRMA 2012/R2.

[1]  Juergen Fleig,et al.  Relationship between Cation Segregation and the Electrochemical Oxygen Reduction Kinetics of La0.6Sr0.4CoO3−δ Thin Film Electrodes , 2011 .

[2]  Xueyan Song,et al.  Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La0.8Sr0.2)0.95MnO3 electrodes , 2015 .

[3]  Masaharu Komiyama,et al.  Design and Preparation of Impregnated Catalysts , 1985 .

[4]  Mogens Bjerg Mogensen,et al.  Ni-Based Solid Oxide Cell Electrodes , 2013 .

[5]  Christopher Graves,et al.  Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes. , 2015, Faraday discussions.

[6]  Jan Van herle,et al.  Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part II: Electrical, electrochemical and microstructural characterization of tape-cast cells , 2011 .

[7]  Ellen Ivers-Tiffée,et al.  Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures , 2011 .

[8]  San Ping Jiang,et al.  Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges , 2012 .

[9]  Moses O. Tadé,et al.  Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements , 2015 .

[10]  Scott A. Barnett,et al.  Pd-substituted (La,Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior , 2011 .

[11]  Mogens Bjerg Mogensen,et al.  Absence of Dopant Segregation to the Surface of Scandia and Yttria Co-Stabilized Zirconia , 2012 .

[12]  Scott A. Barnett,et al.  SOFC Anode Performance Enhancement through Precipitation of Nanoscale Catalysts , 2007 .

[13]  L. Reine Wallenberg,et al.  Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells , 2008 .

[14]  Zahid Hussain,et al.  Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. , 2010, Nature materials.

[15]  O. Joubert,et al.  New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5 − xNix)O3 − δ and (La0.75Sr0.25)(Cr0.5 − xNixMn0.5)O3 − δ , 2010 .

[16]  John T. S. Irvine,et al.  Scale Up and Anode Development for La‐Doped SrTiO3 Anode‐Supported SOFCs , 2013 .

[17]  W. Chueh,et al.  Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions , 2015, Nature Communications.

[18]  Rutherford Aris,et al.  The Distribution of Active ingredients in Supported Catalysts Prepared by Impregnation , 1985 .

[19]  Mogens Bjerg Mogensen,et al.  LSM Microelectrodes: Kinetics and Surface Composition , 2015 .

[20]  John T. S. Irvine,et al.  Fabrication and characterisation of a large-area solid oxide fuel cell based on dual tape cast YSZ electrode skeleton supported YSZ electrolytes with vanadate and ferrite perovskite-impregnated anodes and cathodes , 2014 .

[21]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[22]  Mogens Bjerg Mogensen,et al.  Microstructural and chemical changes at the Ni/YSZ interface , 2001 .

[23]  G. Tsekouras,et al.  Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants , 2013 .

[24]  Jian Pu,et al.  Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ+Y2O3 stabilized ZrO2 composite cathodes , 2010 .

[25]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[26]  John M. Vohs,et al.  Nanostructured anodes for solid oxide fuel cells , 2009 .

[27]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[28]  Mitsuharu Konuma,et al.  Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC Cathodes by Electrochemical Activation , 2005 .

[29]  Mary P. Ryan,et al.  In Situ Measurements on Solid Oxide Fuel Cell Cathodes – Simultaneous X‐Ray Absorption and AC Impedance Spectroscopy on Symmetrical Cells , 2013 .

[30]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[31]  John T. S. Irvine,et al.  Perovskite Defect Chemistry as Exemplified by Strontium Titanate , 2013 .

[32]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[33]  Steven J. Visco,et al.  Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes , 2008 .

[34]  Paul A. Connor,et al.  Solid Oxide Fuels Cells: Facts and Figures , 2013 .

[35]  Meilin Liu,et al.  High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials , 2014 .

[36]  S. Dutta,et al.  Comprehensive Inorganic Chemistry II (Second Edition) , 2013 .

[37]  J. Nørskov,et al.  Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations , 2006 .

[38]  刘江,et al.  In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells , 2015 .

[39]  Kui Zhang,et al.  Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: Bulk versus surface re-dispersion , 2012 .

[40]  Satoshi Hamakawa,et al.  Partial oxidation of methane over aNi/BaTiO3 catalyst prepared by solid phasecrystallization , 1997 .

[41]  Mogens Bjerg Mogensen,et al.  Poisoning of Solid Oxide Electrolysis Cells by Impurities , 2010 .

[42]  Christopher Graves Reversing and Repairing Microstructure Degradation in Solid Oxide Cells during Operation , 2013 .

[43]  John T. S. Irvine,et al.  Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells , 2011 .

[44]  Ching-Ping Wong,et al.  Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property , 2010 .

[45]  Mogens Bjerg Mogensen,et al.  A Critical Review of Models of the H2/H2O/Ni/SZ Electrode Kinetics , 2007, ECS Transactions.

[46]  Stuart B. Adler,et al.  Limitations of charge-transfer models for mixed-conducting oxygen electrodes , 2000 .

[47]  John T. S. Irvine,et al.  Evaluation of Ca Doped La0.2Sr0.7TiO3 as an Alternative Material for Use in SOFC Anodes , 2012 .

[48]  Keiichi Narita,et al.  The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control , 2006 .

[49]  Meilin Liu,et al.  Highly efficient layer-by-layer-assisted infiltration for high-performance and cost-effective fabrication of nanoelectrodes. , 2014, ACS applied materials & interfaces.

[50]  Kui Xie,et al.  Perovskite titanate cathode decorated by in-situ grown iron nanocatalyst with enhanced electrocatalytic activity for high-temperature steam electrolysis , 2014 .

[51]  Danielle M. Butts,et al.  Degradation of (La(0.8)Sr(0.2))(0.98)MnO(3-δ)-Zr(0.84)Y(0.16)O(2-γ) composite electrodes during reversing current operation. , 2015, Faraday discussions.

[52]  John T. S. Irvine,et al.  Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes , 2013 .

[53]  Viola Birss,et al.  Electrochemistry of La(0.3)Sr(0.7)Fe(0.7)Cr(0.3)O(3-δ) as an oxygen and fuel electrode for RSOFCs. , 2015, Faraday discussions.

[54]  Dragos Neagu,et al.  Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution , 2015, Nature Communications.

[55]  Ling Zhao,et al.  Enhanced chromium tolerance of Gd0.1Ce0.9O 1.95 Impregnated La0.6Sr0.4Co 0.2Fe0.8O3-d electrode of solid oxide fuel cells , 2013 .

[56]  Helena Téllez,et al.  Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes. , 2015, Faraday discussions.

[57]  Jürgen Fleig,et al.  Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes , 2007 .

[58]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[59]  Dong Ding,et al.  Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique , 2013 .

[60]  Zhi-Xun Shen,et al.  Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface , 2014, Nature Communications.

[61]  Ling Zhao,et al.  Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3 − δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation , 2013 .

[62]  Moses O. Tadé,et al.  Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements , 2015 .

[63]  Kazunari Sasaki,et al.  Improving the Si Impurity Tolerance of Pr0.1Ce0.9O2−δ SOFC Electrodes with Reactive Surface Additives , 2015 .

[64]  Fanglin Chen,et al.  In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells , 2015 .

[65]  Yan Chen,et al.  Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1−xFexO3 surfaces , 2012 .

[66]  W. Chueh,et al.  High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. , 2012, Nature materials.

[67]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[68]  Dragos Neagu,et al.  In situ growth of nanoparticles through control of non-stoichiometry. , 2013, Nature chemistry.

[69]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[70]  Jennifer L. M. Rupp,et al.  Solid oxide fuel cells: Systems and materials , 2004 .

[71]  Mogens Bjerg Mogensen,et al.  H 2 ­ H 2 O ­ Ni ­ YSZ Electrode Performance Effect of Segregation to the Interface , 2004 .

[72]  John T. S. Irvine,et al.  Activation and ripening of impregnated manganese containing perovskite sofc electrodes under redox cycling , 2009 .

[73]  Peter Stanley Jørgensen,et al.  Effect of Ru/CGO versus Ni/CGO Co‐Infiltration on the Performance and Stability of STN‐Based SOFCs , 2014 .

[74]  Roger L. Farrow,et al.  In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS , 2010 .

[75]  D. Niakolas Sulfur Poisoning of Ni‐based Anodes for Solid Oxide Fuel Cells in H/C‐based Fuels , 2014 .

[76]  Mikko Pihlatie,et al.  Testing and improving the redox stability of Ni-based solid oxide fuel cells , 2009 .

[77]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[78]  Wei Xu,et al.  Advances and challenges in log analysis , 2011, Commun. ACM.

[79]  David S. McPhail,et al.  Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials , 2014 .

[80]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[81]  S. Ebbesen,et al.  Solid Oxide Electrolysis Cells: Degradation at High Current Densities , 2010 .

[82]  Scott A. Barnett,et al.  Nickel- and Ruthenium-Doped Lanthanum Chromite Anodes: Effects of Nanoscale Metal Precipitation on Solid Oxide Fuel Cell Performance , 2010 .

[83]  Jing-Li Luo,et al.  A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes , 2015 .

[84]  Keiichi Narita,et al.  Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. , 2006, Angewandte Chemie.

[85]  Dong Ding,et al.  Enhancing SOFC cathode performance by surface modification through infiltration , 2014, Energy & Environmental Science.

[86]  Janusz Nowotny,et al.  Science of ceramic interfaces II , 1994 .

[87]  Raymond J. Gorte,et al.  High‐Performance SOFC Cathodes Prepared by Infiltration , 2009 .

[88]  Luca Gregoratti,et al.  In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy , 2008 .

[89]  Harumi Yokokawa,et al.  Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics , 2008 .

[90]  Meilin Liu,et al.  Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations , 2010 .

[91]  Hubert A. Gasteiger,et al.  Advances in electrocatalysis, materials, diagnostics and durability , 2009 .

[92]  Stephen J. Skinner,et al.  Application of combined neutron diffraction and impedance spectroscopy for in-situ structure and conductivity studies of La2Mo2O9 , 2011 .

[93]  A. Huq,et al.  Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases? , 2015, Faraday discussions.

[94]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[95]  A. Trotman‐Dickenson,et al.  ‘Comprehensive’ Inorganic Chemistry , 1958, Nature.

[96]  Wei Zhang,et al.  Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current , 2013 .

[97]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[98]  Yang Shao-Horn,et al.  Activity Enhancement of Dense Strontium-Doped Lanthanum Manganite Thin Films under Cathodic Polarization: A Combined AES and XPS Study , 2009 .

[99]  K. Szot,et al.  Surfaces of reduced and oxidized SrTiO 3 from atomic force microscopy , 1999 .

[100]  John T. S. Irvine,et al.  Short Stack and Full System Test Using a Ceramic A‐Site Deficient Strontium Titanate Anode , 2015 .

[101]  Charles C. Sorrell,et al.  Segregation in zirconia: equilibrium versus non‐equilibrium segregation , 2005 .

[102]  J. Maier,et al.  Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. , 2013, Physical chemistry chemical physics : PCCP.

[103]  Mogens Bjerg Mogensen,et al.  Need for In Operando Characterization of Electrochemical Interface Features , 2015 .

[104]  San Ping Jiang,et al.  Nanoscale and Nano‐Structured Electrodes of Solid Oxide Fuel Cells by Infiltration: Advances and Challenges , 2012 .

[105]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[106]  Hubert A. Gasteiger,et al.  Handbook of Fuel Cells , 2010 .

[107]  Hirohisa Tanaka,et al.  Self‐Regeneration of a Pd‐Perovskite Catalyst for Automotive Emissions Control. , 2010 .