Some computational aspects of low-level computer vision

Some computational aspects of low-level computer vision are addressed, discussing the following example problems: 2-1/2 dimensional sketch, shape from shading, and optical flow. The existence and uniqueness of the solutions, schemes for optimal solutions, reliable and efficient algorithms for the computation, discretization errors, and coping with discontinuities are studied. >

[1]  David Lee,et al.  Optimal algorithms for image understanding: Current status and future plans , 1985, J. Complex..

[2]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  W. Eric L. Grimson,et al.  Discontinuity detection for visual surface reconstruction , 1985, Comput. Vis. Graph. Image Process..

[4]  D. Lee,et al.  Algorithms for shape from shading and occluding boundaries , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Henryk Wozniakowski,et al.  On the Optimal Solution of Large Linear Systems , 1984, JACM.

[6]  Michael J. Brooks,et al.  Shape and Source from Shading , 1985, IJCAI.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  Alex Pentland,et al.  Shading into Texture , 1984, Artif. Intell..

[9]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[10]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[11]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[12]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[13]  John R. Kender,et al.  Shape from Darkness: Deriving Surface Information from Dynamic Shadows , 1986, AAAI.

[14]  Azriel Rosenfeld,et al.  Improved Methods of Estimating Shape from Shading Using the Light Source Coordinate System , 1985, Artif. Intell..

[15]  David Lee,et al.  Fast multiplication of a recursive block Toeplitz matrix by a vector and its application , 1986, J. Complex..

[16]  Duk Lun Lee,et al.  A provably convergent algorithm for shape from shading , 1989 .

[17]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[18]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[19]  Takeo Kanade,et al.  Adapting optical-flow to measure object motion in reflectance and x-ray image sequences (abstract only) , 1984, COMG.

[20]  David Lee,et al.  One-Dimensional Regularization with Discontinuities , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  C. Reinsch Smoothing by spline functions , 1967 .

[22]  J. Meinguet Surface Spline Interpolation: Basic Theory and Computational Aspects , 1984 .

[23]  Michael Brady,et al.  Computational Approaches to Image Understanding , 1982, CSUR.

[24]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[25]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..