Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem
暂无分享,去创建一个
[1] G. Serra. Les théorèmes de Noether , 2009 .
[2] Delfim F. M. Torres,et al. Fractional conservation laws in optimal control theory , 2007, 0711.0609.
[3] Dumitru Baleanu,et al. The Hamilton formalism with fractional derivatives , 2007 .
[4] Delfim F. M. Torres,et al. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .
[5] Delfim F. M. Torres,et al. A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .
[6] Jacky Cresson,et al. Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.
[7] K. Tas,et al. Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.
[8] Om P. Agrawal,et al. Fractional variational calculus and the transversality conditions , 2006 .
[9] Delfim F. M. Torres,et al. Noether's theorem for fractional optimal control problems , 2006, math/0603598.
[10] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[11] A Noether Theorem on Unimprovable Conservation Laws for Vector-Valued Optimization Problems in Control Theory , 2004, math/0411173.
[12] Nonconservative Noether's Theorem in Optimal Control , 2005, math/0512468.
[13] M. Klimek. Lagrangian fractional mechanics — a noncommutative approach , 2005 .
[14] D.Baleanu,et al. Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.
[15] D. Baleanu,et al. Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives , 2005, math-ph/0510030.
[16] Jacky Cresson,et al. Fractional differential equations and the Schrödinger equation , 2005, Appl. Math. Comput..
[17] Dumitru Baleanu,et al. Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives , 2005 .
[18] O. Agrawal. A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .
[19] D. Baleanu,et al. Fractional Euler-Lagrange Equations for Constrained Systems , 2004 .
[20] Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations , 2004 .
[21] Malgorzata Klimek,et al. Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .
[22] Om P. Agrawal,et al. Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .
[23] Delfim F. M. Torres. On the Noether theorem for optimal control , 2001, 2001 European Control Conference (ECC).
[24] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[25] N. Weatherill,et al. Introduction * , 1947, Nordic Journal of Linguistics.
[26] Frederick E. Riewe,et al. Mechanics with fractional derivatives , 1997 .
[27] Riewe,et al. Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[28] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[29] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[30] A. Strauss,et al. Noether's theory for non-conservative generalised mechanical systems , 1980 .
[31] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[32] E. Blum,et al. The Mathematical Theory of Optimal Processes. , 1963 .
[33] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .