Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem

The study of fractional variational problems with derivatives in the sense of Caputo is a recent subject, the main results being Agrawal’s necessary optimality conditions of Euler-Lagrange and respective transversality conditions. Using Agrawal’s Euler-Lagrange equation and the Lagrange multiplier technique, we obtain here a Noether-like theorem for fractional optimal control problems in the sense of Caputo.

[1]  G. Serra Les théorèmes de Noether , 2009 .

[2]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[3]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[4]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[5]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[6]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[7]  K. Tas,et al.  Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.

[8]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[9]  Delfim F. M. Torres,et al.  Noether's theorem for fractional optimal control problems , 2006, math/0603598.

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  A Noether Theorem on Unimprovable Conservation Laws for Vector-Valued Optimization Problems in Control Theory , 2004, math/0411173.

[12]  Nonconservative Noether's Theorem in Optimal Control , 2005, math/0512468.

[13]  M. Klimek Lagrangian fractional mechanics — a noncommutative approach , 2005 .

[14]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[15]  D. Baleanu,et al.  Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives , 2005, math-ph/0510030.

[16]  Jacky Cresson,et al.  Fractional differential equations and the Schrödinger equation , 2005, Appl. Math. Comput..

[17]  Dumitru Baleanu,et al.  Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives , 2005 .

[18]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[19]  D. Baleanu,et al.  Fractional Euler-Lagrange Equations for Constrained Systems , 2004 .

[20]  Delfim F. M. Torres Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations , 2004 .

[21]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[22]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[23]  Delfim F. M. Torres On the Noether theorem for optimal control , 2001, 2001 European Control Conference (ECC).

[24]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[25]  N. Weatherill,et al.  Introduction * , 1947, Nordic Journal of Linguistics.

[26]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[27]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[29]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[30]  A. Strauss,et al.  Noether's theory for non-conservative generalised mechanical systems , 1980 .

[31]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[32]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[33]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .