A Hierarchical Procedure for the Synthesis of ANFIS Networks

Adaptive neurofuzzy inference systems (ANFIS) represent an efficient technique for the solution of function approximation problems. When numerical samples are available in this regard, the synthesis of ANFIS networks can be carried out exploiting clustering algorithms. Starting from a hyperplane clustering synthesis in the joint input-output space, a computationally efficient optimization of ANFIS networks is proposed in this paper. It is based on a hierarchical constructive procedure, by which the number of rules is progressively increased and the optimal one is automatically determined on the basis of learning theory in order to maximize the generalization capability of the resulting ANFIS network. Extensive computer simulations prove the validity of the proposed algorithm and show a favorable comparison with other well-established techniques.

[1]  Endra Joelianto,et al.  Time Series Estimation on Earthquake Events using ANFIS with Mapping Function , 2008 .

[2]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[3]  Massimo Panella,et al.  Advances in biological time series prediction by neural networks , 2011, Biomed. Signal Process. Control..

[4]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[5]  Frank Nielsen,et al.  On weighting clustering , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Héctor Pomares,et al.  Self-organized fuzzy system generation from training examples , 2000, IEEE Trans. Fuzzy Syst..

[7]  Euntai Kim,et al.  A transformed input-domain approach to fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[8]  C. Mazzetti,et al.  Partial discharge pattern recognition by neuro-fuzzy networks in heat-shrinkable joints and terminations of XLPE insulated distribution cables , 2006, IEEE Transactions on Power Delivery.

[9]  Hui Hong,et al.  Fingerprint matching using ANFIS , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[10]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[11]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[12]  Euntai Kim,et al.  A new approach to fuzzy modeling , 1997, IEEE Trans. Fuzzy Syst..

[13]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[14]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[15]  Sy Dzung Nguyen,et al.  An Adaptive Input Data Space Parting Solution to the Synthesis of Neuro-Fuzzy Models , 2008 .

[16]  Hagbae Kim,et al.  A design of RFTOG model for distributed real-time applications , 2009, J. Intell. Manuf..

[17]  Zhaoshui He,et al.  An Efficient K -Hyperplane Clustering Algorithm and Its Application to Sparse Component Analysis , 2007, ISNN.

[18]  Fuchun Sun,et al.  Neuro-Fuzzy Hybrid Position/Force Control for a Space Robot with Flexible Dual-Arms , 2004, ISNN.

[19]  Massimo Panella,et al.  An input-output clustering approach to the synthesis of ANFIS networks , 2005, IEEE Transactions on Fuzzy Systems.

[20]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[21]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[22]  Jin Young Kim,et al.  Fuzzy neural networks for obstacle pattern recognition and collision avoidance of fish robots , 2008, Soft Comput..

[23]  Jin Young Kim,et al.  Obstacle Recognition and Collision Avoidance of a Fish Robot Based on Fuzzy Neural Networks , 2007, ICFIE.

[24]  Arash Etemadi,et al.  Adaptive neuro-fuzzy inference system based automatic generation control , 2008 .

[25]  Ivan Nunes da Silva,et al.  Efficient Parametric Adjustment of Fuzzy Inference System Using Error Backpropagation Method , 2009, ICANN.

[26]  Richard A. McIndoe,et al.  A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets , 2009, Bioinform..

[27]  Mu-Song Chen,et al.  An efficient learning method of fuzzy inference system , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[28]  Pinar Çivicioglu Using Uncorrupted Neighborhoods of the Pixels for Impulsive Noise Suppression With ANFIS , 2007, IEEE Transactions on Image Processing.

[29]  Ge Guo,et al.  Anfis Applied to a Ship Autopilot Design , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[30]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[31]  Antonello Rizzi,et al.  Refining accuracy of environmental data prediction by MoG neural networks , 2003, Neurocomputing.

[32]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[33]  P. K. Simpson,et al.  Fuzzy min-max neural networks , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[34]  Mohammad Ali Ghorbani,et al.  Comparison of three artificial intelligence techniques for discharge routing , 2011 .

[35]  Fariborz Jolai,et al.  Determining significant parameters in the design of ANFIS , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[36]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[37]  Serge Guillaume,et al.  Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..

[38]  Ioannis Pitas,et al.  Median radial basis function neural network , 1996, IEEE Trans. Neural Networks.

[39]  Javier Echanobe,et al.  An adaptive neuro-fuzzy system for efficient implementations , 2008, Inf. Sci..

[40]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[41]  Andrew A. Goldenberg,et al.  Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..

[42]  Antonello Rizzi,et al.  A constructive EM approach to density estimation for learning , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[43]  Song-Shyong Chen,et al.  Robust TSK fuzzy modeling for function approximation with outliers , 2001, IEEE Trans. Fuzzy Syst..

[44]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[45]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[46]  Antonello Rizzi,et al.  ANFIS synthesis by hyperplane clustering , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[47]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[48]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[49]  Massimo Panella,et al.  Neural networks with quantum architecture and quantum learning , 2011, Int. J. Circuit Theory Appl..

[50]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[51]  Massimo Panella,et al.  Neurofuzzy Networks With Nonlinear Quantum Learning , 2009, IEEE Transactions on Fuzzy Systems.

[52]  Zoubin Ghahramani,et al.  Solving inverse problems using an EM approach to density estimation , 1993 .

[53]  Mohsen Hayati,et al.  Modeling and simulation of combinational CMOS logic circuits by ANFIS , 2010, Microelectron. J..

[54]  Mingui Sun,et al.  An adaptive training algorithm for back-propagation neural networks , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[55]  P. Siarry,et al.  Gradient descent method for optimizing various fuzzy rule bases , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[56]  Philip D. Wasserman,et al.  Advanced methods in neural computing , 1993, VNR computer library.

[57]  Jian Cheng,et al.  Forecasting Coal and Rock Dynamic Disaster Based on Adaptive Neuro-Fuzzy Inference System , 2010, ICCCI.