Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

[1]  Albert V. Davydov,et al.  MPInterfaces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems , 2016, 1602.07784.

[2]  Kamal Choudhary,et al.  Charge optimized many-body (COMB) potential for dynamical simulation of Ni–Al phases , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[4]  Kamal Choudhary,et al.  Dynamical properties of AlN nanostructures and heterogeneous interfaces predicted using COMB potentials , 2016 .

[5]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[6]  Yong-Gang Li Rock Anisotropy, Fracture and Earthquake Assessment , 2016 .

[7]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[8]  Francesca Tavazza,et al.  Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization , 2015 .

[9]  J. R. Beeler,et al.  INTERATOMIC POTENTIALS AND SIMULATION OF LATTICE DEFECTS. Battelle Institute Materials Science Colloquia, Seattle, Washington and Harrison Hot Springs, British Columbia, June 14--19, 1971. , 1972 .

[10]  X. W. Zhou,et al.  Embedded-ion method: An analytical energy-conserving charge-transfer interatomic potential and its application to the La-Br system , 2008 .

[11]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[12]  Masoud Aryanpour,et al.  Development of a reactive force field for iron-oxyhydroxide systems. , 2010, The journal of physical chemistry. A.

[13]  Christina Freytag,et al.  The Definitive Guide To Mongodb The Nosql Database For Cloud And Desktop Computing , 2016 .

[14]  P. Paufler,et al.  Smithells Metals Reference Book. Butterworth-Heinemann Ltd., Oxford, 1992. 1746 Seiten, Preis 150 £, ISBN 0-7506-1020-4 , 1993 .

[15]  Charles R. Severance,et al.  Discovering JavaScript Object Notation , 2012, Computer.

[16]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[17]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[18]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[19]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[20]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[21]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[22]  Anubhav Jain,et al.  Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases , 2016 .

[23]  Morihiko Nakamura,et al.  Elastic constants of some transition- metal- disilicide single crystals , 1994 .

[24]  R. Hearmon,et al.  The Elastic Constants of Anisotropic Materials , 1946 .

[25]  Hanchen Huang,et al.  Molecular dynamics determination of defect energetics in beta -SiC using three representative empirical potentials , 1995 .

[26]  C. Brooks Computer simulation of liquids , 1989 .

[27]  Surya R. Kalidindi,et al.  Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets , 2015, Nanotechnology.

[28]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[29]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[30]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[31]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[32]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[33]  Franziska Frankfurter,et al.  Smithells Metals Reference Book , 2016 .

[34]  Tzu-Ray Shan,et al.  Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials , 2011 .

[35]  Hong Ding,et al.  PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds , 2015, Comput. Phys. Commun..

[36]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[37]  Alex V Vasenkov,et al.  Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation. , 2012, The journal of physical chemistry. A.

[38]  David S. Sholl,et al.  Density Functional Theory , 2009 .

[39]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[40]  G. P. P. Pun,et al.  Development of an interatomic potential for the Ni-Al system , 2009 .

[41]  D. C. Stouffer,et al.  Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy , 1996 .

[42]  D. Sholl,et al.  Density Functional Theory: A Practical Introduction , 2009 .

[43]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[44]  J. Smith,et al.  Elastic constants of some MAl2 single crystals , 1974 .

[45]  Gordon E. Moore Semiconductor Rams - a Status Report , 1971, Computer.

[46]  Y. P. Varshni Temperature Dependence of the Elastic Constants , 1970 .

[47]  Masahiro Koiwa,et al.  Single-crystal elastic constants of intermetallic compounds , 1996 .

[48]  Baerends,et al.  Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations. , 1996, Physical review. B, Condensed matter.

[49]  Kai Nordlund,et al.  Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride , 2003 .

[50]  Francesca Tavazza,et al.  Considerations for choosing and using force fields and interatomic potentials in materials science and engineering , 2013 .

[51]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[52]  Hideyuki Yasuda,et al.  Elasticity of Ni-based L12-type intermetallic compounds , 1992 .

[53]  Tzu-Ray Shan,et al.  Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials , 2013 .

[54]  Robert Isaac Jaffee,et al.  INTERATOMIC POTENTIALS AND SIMULATION OF LATTICE DEFECTS , 1972 .

[55]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[56]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[57]  Chris Jones,et al.  Interatomic potentials for ternary Nb - Ti - Al alloys , 1996 .

[58]  James P. Sethna,et al.  The potential of atomistic simulations and the knowledgebase of interatomic models , 2011 .