Parietal Area VIP Causally Influences Heading Perception during Pursuit Eye Movements

The ventral intraparietal area (VIP) of the macaque monkey brain is a multimodal area with visual, vestibular, somatosensory, and eye movement-related responses. The visual responses are strongly directional, and VIP neurons respond well to complex optic flow patterns similar to those found during self-motion. To test the hypothesis that visual responses in VIP directly contribute to the perception of self-motion direction, we used electrical microstimulation to perturb activity in VIP while animals performed a two-alternative heading discrimination task. Microstimulation systematically biased monkeys' choices in a direction consistent with neuronal preferences at the stimulation site, and these effects were larger while the animal was making smooth pursuit eye movements. From these results, we conclude that VIP is causally involved in the perception of self-motion from visual cues and that this involvement is gated by ongoing motor behavior.

[1]  James A. Crowell,et al.  The perception of heading during eye movements , 1992, Nature.

[2]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  David N. Lee,et al.  Where we look when we steer , 1994, Nature.

[4]  G. DeAngelis,et al.  Linking Neural Representation to Function in Stereoscopic Depth Perception: Roles of the Middle Temporal Area in Coarse versus Fine Disparity Discrimination , 2006, The Journal of Neuroscience.

[5]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[6]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[7]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[8]  S. Sterbing-D’Angelo,et al.  Behavioral/systems/cognitive Multisensory Space Representations in the Macaque Ventral Intraparietal Area , 2022 .

[9]  Tirin Moore,et al.  Complex movements evoked by microstimulation of the ventral intraparietal area , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[11]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[12]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[13]  Frank Bremmer,et al.  Navigation in space – the role of the macaque ventral intraparietal area , 2005, The Journal of physiology.

[14]  J. Gibson The perception of the visual world , 1951 .

[15]  K. M. L. Suxena,et al.  Introduction to Statistical Theory , 1976 .

[16]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[17]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  K. Hoffmann,et al.  Ocular responses to radial optic flow and single accelerated targets in humans , 1999, Vision Research.

[19]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[20]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[22]  James B. Maciokas,et al.  Extrastriate Area Mst and Parietal Area Vip Similarly Represent Forward Headings Subjects and Surgery , 2022 .

[23]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[24]  Dylan F. Cooke,et al.  Defensive movements evoked by air puff in monkeys. , 2003, Journal of neurophysiology.

[25]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[26]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[27]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[28]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  G. DeAngelis,et al.  A functional link between area MSTd and heading perception based on vestibular signals , 2007, Nature Neuroscience.

[30]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[31]  R. Andersen,et al.  The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements , 2006, Neuropsychologia.

[32]  Brett R Fajen,et al.  Behavioral dynamics of steering, obstacle avoidance, and route selection. , 2003, Journal of experimental psychology. Human perception and performance.

[33]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[34]  Tao Zhang,et al.  The responses of VIP neurons are sufficiently sensitive to support heading judgments. , 2010, Journal of neurophysiology.

[35]  A Pouget,et al.  MSTd neuronal basis functions for the population encoding of heading direction. , 2003, Journal of neurophysiology.

[36]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[37]  R. Hetherington The Perception of the Visual World , 1952 .

[38]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[39]  K. Hoffmann,et al.  Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements , 2003, The Journal of physiology.

[40]  A P Georgopoulos,et al.  Effects of optic flow in motor cortex and area 7a. , 2001, Journal of neurophysiology.

[41]  Frank Bremmer,et al.  Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP) , 2002, The European journal of neuroscience.

[42]  K. H. Britten,et al.  Clustering of selectivity for optic flow in the ventral intraparietal area , 2004, Neuroreport.

[43]  Hilary W. Heuer,et al.  Parietal Area VIP Neuronal Responses to Heading Stimuli Are Encoded in Head-Centered Coordinates , 2004, Neuron.

[44]  Kenneth H Britten,et al.  Area MST and heading perception in macaque monkeys. , 2002, Cerebral cortex.

[45]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.