LQP-Based Controller Design for Humanoid Whole-Body Motion

Motion synthesis is a central question in humanoid robotics research. The present paper proposes a generic approach exploiting a quadratic programming method for solving the problem of motion coordination under physical constraints. Details about the problem formulation for dealing with sequences of complex activities are given. The method is illustrated in several examples using the iCub robot. We will show how whole-body control under multiple contact constraints can be achieved. We will also discuss how it is possible to organize the priorities between the tasks in this framework to balance multiple objectives.

[1]  Oussama Khatib,et al.  Control Strategies for Robots in Contact , 2006 .

[2]  Oussama Khatib,et al.  Synthesis and control of whole-body behaviors in humanoid systems , 2007 .

[3]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[4]  Jorge Angeles,et al.  A Sequential-Quadratic-Programming Algorithm Using Orthogonal Decomposition With Gerschgorin Stabilization , 2001 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Fan-Tien Cheng,et al.  Efficient algorithm for resolving manipulator redundancy-the compact QP method , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  Pierre-Brice Wieber Constrained dynamics and parametrized control in biped walking , 2000 .

[8]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[9]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[10]  Jorge Angeles,et al.  The mechanical design of a novel Schönflies-motion generator , 2007 .

[11]  Jadran Lenarčič,et al.  Advances in robot kinematics : mechanisms and motion , 2006 .

[12]  J.S. Yuan,et al.  Closed-loop manipulator control using quaternion feedback , 1988, IEEE J. Robotics Autom..

[13]  Shuuji Kajita,et al.  Dynamical balance of a humanoid robot grasping an environment , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Alain Micaelli,et al.  Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[15]  Jorge Angeles,et al.  Complexity analysis for the conceptual design of robotic architecture , 2006, ARK.

[16]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[17]  Kenneth J. Waldron,et al.  Geometric Optimization of Serial Chain Manipulator Structures for Working Volume and Dexterity , 1986 .

[18]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[19]  Kenneth J. Waldron,et al.  Geometric optimization of manipulator structures for working volume and dexterity , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[21]  Pierre-Brice Wieber On the stability of walking systems , 2002 .

[22]  Clément Gosselin,et al.  Optimization of planar and spherical function generators as minimum-defect linkages , 1989 .

[23]  Giulio Sandini,et al.  The iCub humanoid robot: an open platform for research in embodied cognition , 2008, PerMIS.

[24]  Libor Preucil,et al.  European Robotics Symposium 2008 , 2008 .

[25]  Guy Bessonnet,et al.  Forces acting on a biped robot. Center of pressure-zero moment point , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.