Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach.

Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.

[1]  S. Nam,et al.  Palladium catalysts for dehydrogenation of ammonia borane with preferential B-H activation. , 2010, Journal of the American Chemical Society.

[2]  R. E. Del Sesto,et al.  Improved hydrogen release from ammonia-borane with ZIF-8. , 2012, Inorganic chemistry.

[3]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[4]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[5]  I. Manners,et al.  B-N compounds for chemical hydrogen storage. , 2009, Chemical Society reviews.

[6]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[7]  Chang‐jun Liu,et al.  Cu3(BTC)2: CO oxidation over MOF based catalysts. , 2011, Chemical communications.

[8]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[9]  R. Tom Baker,et al.  Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. , 2007, Journal of the American Chemical Society.

[10]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[11]  Shouheng Sun,et al.  Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. , 2010, Journal of the American Chemical Society.

[12]  Shouheng Sun,et al.  Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane , 2010 .

[13]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[14]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[15]  P. Miele,et al.  Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. , 2011, ChemSusChem.

[16]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[17]  Sean Parkin,et al.  A mesoporous metal-organic framework with permanent porosity. , 2006, Journal of the American Chemical Society.

[18]  Qiang Xu,et al.  Catalytic hydrolysis of ammonia borane for chemical hydrogen storage , 2011 .

[19]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[20]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[21]  G. Férey,et al.  Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. , 2010, Journal of the American Chemical Society.

[22]  T. Akita,et al.  Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. , 2008, Chemistry.

[23]  Young Eun Cheon,et al.  Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. , 2009, Angewandte Chemie.

[24]  Peyman Z. Moghadam,et al.  p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity. , 2011, Journal of the American Chemical Society.

[25]  R. Schlögl,et al.  Nanocatalysis: mature science revisited or something really new? , 2004, Angewandte Chemie.

[26]  Melanie S Sanford,et al.  Highly dispersed palladium(II) in a defective metal-organic framework: application to C-H activation and functionalization. , 2011, Journal of the American Chemical Society.

[27]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[28]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[29]  M. S. El-shall,et al.  Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101† , 2009 .

[30]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[31]  Young Kwan Park,et al.  Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. , 2010, Chemical communications.

[32]  O. Lebedev,et al.  Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs , 2010 .

[33]  Johan Hofkens,et al.  Metal–Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures , 2011, Advanced materials.

[34]  H. Chu,et al.  Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage , 2009 .

[35]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[36]  S. Nam,et al.  Tetraglyme-mediated synthesis of Pd nanoparticles for dehydrogenation of ammonia borane. , 2012, Chemical communications.

[37]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[38]  P. Schiffer,et al.  Room-temperature chemical synthesis of shape-controlled indium nanoparticles. , 2008, Journal of the American Chemical Society.

[39]  Fei Wang,et al.  Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[40]  Qiang Xu,et al.  CO catalytic oxidation by a metal organic framework containing high density of reactive copper sites. , 2011, Chemical communications.

[41]  M. Haruta,et al.  Catalytically highly active top gold atom on palladium nanocluster. , 2011, Nature materials.

[42]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[43]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[44]  T. Hügle,et al.  The route to a feasible hydrogen-storage material: MOFs versus ammonia borane. , 2011, Chemistry.

[45]  Rafael Luque,et al.  Supported metal nanoparticles on porous materials. Methods and applications. , 2009, Chemical Society reviews.

[46]  W. Li,et al.  Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane. , 2010, ChemSusChem.

[47]  Qiang Xu,et al.  Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts , 2007 .

[48]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[49]  J. Bitter,et al.  On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. , 2009, Journal of the American Chemical Society.

[50]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[51]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[52]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[53]  A. J. Blake,et al.  Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework , 2009, Nature Chemistry.

[54]  T. Akita,et al.  Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. , 2009, Journal of the American Chemical Society.

[55]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[56]  A. Jess,et al.  Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. , 2008, Chemistry.

[57]  D. Bazin,et al.  Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas: In Situ Investigation Using Synchrotron Radiation , 2004 .

[58]  Brian F. G. Johnson,et al.  Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters , 2008, Nature.

[59]  M. Indirani,et al.  First row transition metal ion-assisted ammonia-borane hydrolysis for hydrogen generation. , 2008, Inorganic chemistry.

[60]  In situ encapsulation of Pt nanoparticles in mesoporous silica: Synthesis, characterisation and effect of particle size on CO oxidation , 2011 .

[61]  T. Yildirim,et al.  Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. , 2011, Chemistry.

[62]  Qiang Xu,et al.  Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. , 2008, Angewandte Chemie.

[63]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[64]  G. Lu,et al.  Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. , 2010, Journal of the American Chemical Society.

[65]  Xinggui Zhou,et al.  Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water , 2011 .