Identification of continuous-time models with slowly time-varying parameters

The off-line estimation of the parameters of continuous-time, linear, time-invariant transfer function models can be achieved straightforwardly using linear prefilters on the measured input and output of the system. The on-line estimation of continuous-time models with time-varying parameters is less straightforward because it requires the updating of the continuous-time prefilter parameters. This paper shows how such on-line estimation is possible by using recursive instrumental variable approaches. The proposed methods are presented in detail and also evaluated on a numerical example using both single experiment and Monte Carlo simulation analysis. In addition, the proposed recursive algorithms are tested using data from two real-life systems.

[1]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[2]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[3]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .

[4]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[5]  Peter C. Young,et al.  Identification and control of electro-mechanical systems using state-dependent parameter estimation , 2017, Int. J. Control.

[6]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[7]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[8]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[9]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[10]  Sridhar Ungarala,et al.  Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method , 1997, Autom..

[11]  P. Young,et al.  Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models , 2008 .

[12]  Jonas Rutström,et al.  Simplified Wiener LMS tracking with automatic tuning of the step-size , 2005 .

[13]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[14]  R. R. Rhinehart,et al.  An efficient method for on-line identification of steady state , 1995 .

[15]  Maciej Niedzwiecki,et al.  Identification of Time-Varying Processes , 2000 .

[16]  Jens Parkum Recursive identification of time-varying systems , 1992 .

[17]  Sridhar Ungarala,et al.  Time-varying system identification using modulating functions and spline models with application to bio-processes , 2000 .

[18]  A. C. Bittencourt,et al.  An Algorithm for Finding Process Identification Intervals from Normal Operating Data , 2015 .

[19]  Hugues Garnier,et al.  Direct continuous-time approaches to system identification. Overview and benefits for practical applications , 2015, Eur. J. Control.

[20]  Shing-Chow Chan,et al.  Local Polynomial Modeling and Variable Bandwidth Selection for Time-Varying Linear Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[21]  Hugues Garnier,et al.  Instrumental variable scheme for closed-loop LPV model identification , 2012, Autom..

[22]  Mikael Olsson,et al.  Robust On-Line Estimation , 1999 .

[23]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[24]  D. Owens,et al.  Sufficient conditions for stability of linear time-varying systems , 1987 .

[25]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[26]  W. Rugh Linear System Theory , 1992 .

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .

[29]  Rolf Isermann,et al.  Identification of Dynamic Systems: An Introduction with Applications , 2010 .

[30]  M. Lovera,et al.  Continuous-time predictor-based subspace identification using laguerre filters , 2011 .

[31]  Soroosh Sorooshian,et al.  Real-time flow forecasting. , 2007 .

[32]  Taketoshi Kawabe,et al.  Identification of a toroidal continuously variable transmission using continuous-time system identification methods , 2006 .

[33]  Svante Gunnarsson,et al.  RECURSIVE IDENTIFICATION OF PHYSICAL PARAMETERS IN A FLEXIBLE ROBOT ARM , 2004 .

[34]  P. Young,et al.  An optimal IV technique for identifying continuous-time transfer function model of multiple input systems , 2007 .