Stability and inertia
暂无分享,去创建一个
[1] P. Parks,et al. Liapunov and the Schur-Cohn stability criterion , 1964 .
[2] B. Datta. Application of Hankel matrices of Markov Parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn problems , 1979 .
[3] H. Wimmer,et al. An inertia theorem for tridiagonal matrices and a criterion of wall on continued fractions , 1974 .
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] B. Cain,et al. The inertial aspects of Stein’s condition -*≫ , 1974 .
[6] Biswa Nath Datta,et al. On the Routh-Hurwitz-Fujiwara and the Schur-Cohn-Fujiwara theorems for the root-separation problem , 1978 .
[7] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[8] M. Marden. Geometry of Polynomials , 1970 .
[9] Harald K. Wimmer,et al. Remarks on inertia theorems for matrices , 1975 .
[10] D. Carlson. On the Controllability of Matrix Pairs $(A, K) with $K$ Positive Semidefinite, II , 1994 .
[11] Chi-Tsong Chen,et al. Inertia theorem for general matrix equations , 1975 .
[12] M. Tismenetsky,et al. Generalized Bezoutian and matrix equations , 1988 .
[13] K. Arrow,et al. A NOTE ON DYNAMIC STABILITY , 1958 .
[14] Some extensions and modifications of classical stability tests for polynomials , 1983 .
[15] Hans Schneider,et al. Inertia theorems for matrices: The semidefinite case , 1963 .
[16] M. Tismenetsky,et al. Bezoutian and Schur-Cohn problem for operator polynomials , 1984 .
[17] Mark J. Balas,et al. Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .
[18] V. Pták,et al. Zero location by Hermitian forms: The singular case , 1982 .
[19] David Carlson,et al. Controllability, inertia, and stability for tridiagonal matrices , 1984 .
[20] O. Taussky. Matrices C with Cn → 0 , 1964 .
[21] R. Kálmán. Algebraic characterization of polynomials whose zeros lie in certain algebraic domains. , 1969, Proceedings of the National Academy of Sciences of the United States of America.
[22] W. Hahn. Eine Bemerkung zur zweiten Methode von LJAPUNOV , 1955 .
[23] B. Anderson. Application of the Second Method of Lyapunov to the Proof of the Markov Stability Criterion , 1967 .
[24] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[25] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[26] B. Datta. An elementary proof of the stability criterion of Liénard and Chipart , 1978 .
[27] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[28] L. Rodman,et al. Inertia Theorems for Hilbert Space Operators Based on Lyapunov and Stein Equations , 1999 .
[29] P. Stein. Some general theorems on iterants , 1952 .
[30] S. Bialas. On the Lyapunov matrix equation , 1980 .
[31] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[32] Harald K. Wimmer,et al. Inertia theorems for matrices, controllability, and linear vibrations , 1974 .
[33] J. Bunch,et al. Decomposition of a symmetric matrix , 1976 .
[34] Alston S. Householder,et al. Bezoutiants, Elimination and Localization , 1970 .
[35] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[36] B. Datta. Stability and D-stability , 1978 .
[37] Harald K. Wimmer,et al. On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.
[38] P. Parks. A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[39] George Cybenko,et al. Fast toeplitz orthogonalization using inner decompositions , 1987 .
[40] B. Datta,et al. Feedback stabilization of a second-order system: A nonmodal approach , 1993 .
[41] D. Carlson,et al. Controllability and inertia theory for functions of a matrix , 1977 .
[42] B. Cain. An inertia theory for operators on a Hilbert space , 1973 .
[43] R. D. Hill,et al. Inertia theory for simultaneously triangulable complex matrices , 1969 .
[44] B. Datta,et al. On finding eigenvalue distribution of a matrix in several regions of the complex plane , 1984, The 23rd IEEE Conference on Decision and Control.
[45] E. Jury,et al. Remarks on the root-clustering of a polynomial in a certain region in the complex plane , 1974 .
[46] Brian D. O. Anderson,et al. Schwarz matrix properties for continuous and discrete time systems , 1976 .
[47] Dragoslav D. Šiljak,et al. Alexandr Michailovich Liapunov (1857 – 1918) , 1976 .
[48] A. Berman,et al. Positive diagonal solutions to the Lyapunov equations , 1978 .
[49] S. Barnett,et al. A note on matrix equations and root location , 1975 .
[50] Biswa Nath Datta,et al. The Lyapunov matrix equation SA+A∗S=S∗B∗BS , 1979 .
[51] D. Carlson,et al. On Ranges of Lyapunov Transformations. , 1974 .
[52] W. Schmitendorf,et al. A Simple Test for Asymptotic Stability in Partially Dissipative Symmetric Systems , 1973 .
[53] Abraham Berman,et al. Matrix Diagonal Stability and Its Implications , 1983 .
[54] Paul Van Dooren,et al. Structured linear algebra problems in digital signal processing , 1991 .
[55] Biswa Nath Datta,et al. On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .
[56] Amit Bhaya,et al. On the design of large flexible space structures(LFSS) , 1985, 1985 24th IEEE Conference on Decision and Control.
[57] Charles R. Johnson. Sufficient conditions for D-stability , 1974 .
[58] Charles R. Johnson,et al. A Semi-Definite Lyapunov Theorem and the Characterization of Tridiagonal D-Stable Matrices , 1982 .
[59] E. Ecer,et al. Numerical Linear Algebra and Applications , 1995, IEEE Computational Science and Engineering.
[60] B. O. Anderson,et al. Generalized Bezoutian and Sylvester matrices in multivariable linear control , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.
[61] H. Schneider. Positive operators and an inertia theorem , 1965 .
[62] P. Lancaster,et al. Inertia characteristics of self-adjoint matrix polynomials , 1983 .
[63] Biswa Nath Datta,et al. Linear and numerical linear algebra in control theory: some research problems , 1994 .
[64] Raphael Loewy,et al. An inertia theorem for Lyapunov's equation and the dimension of a controllability space , 1997 .
[65] J. Bunch. Analysis of the Diagonal Pivoting Method , 1971 .
[66] M.L.J. Hautus,et al. Controllability and observability conditions of linear autonomous systems , 1969 .
[67] Y Saad,et al. Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .
[68] Similarity and the numerical range , 1969 .
[69] Biswa Nath Datta,et al. The matrix equation XA=ATX and an associated algorithm for solving the inertia and stability problems☆ , 1987 .
[70] Bryan E. Cain. The Inertial Aspects of Stein's Condition H - C ∗ HC ≫0 , 1974 .
[71] R. D. Hill,et al. Eigenvalue location using certain matrix functions and geometric curves , 1977 .
[72] A. Liapounoff,et al. Problème général de la stabilité du mouvement , 1907 .
[73] Ole Østerby,et al. Direct Methods for Space Matrices , 1983, Lecture Notes in Computer Science.
[74] Chi-Tsong Chen,et al. A Generalization of the Inertia Theorem , 1973 .
[75] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[76] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[77] H. Wielandt,et al. On the eigenvalues of A + B and AB , 1973 .
[78] S. Gutman,et al. A general theory for matrix root-clustering in subregions of the complex plane , 1981 .
[79] D. Carlson,et al. On the effective computation of the inertia of a non-hermitian matrix , 1979 .
[80] S. Lehnigk. Liapunov’s Direct Method and the Number of Zeros with Positive Real Parts of a Polynomial with Constant Complex Coefficients , 1967 .
[81] F. R. Gantmakher. The Theory of Matrices , 1984 .
[82] G. F. Bryant. On a generalization of a theorem of Lyapunov , 1975 .
[83] T. Kailath,et al. Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .
[84] Patrizio Colaneri,et al. Lyapunov and Riccati equations: Periodic inertia theorems , 1986 .
[85] H. Wimmer,et al. On the Ostrowski-Schneider Inertia Theorem , 1973 .
[86] S. Barnett,et al. A Note on the Bezoutian Matrix , 1972 .
[87] S. K. Mitter,et al. Algebraic methods for the solution of some linear matrix equations , 1982 .
[88] J. L. Howland,et al. Matrix equations and the separation of matrix eigenvalues , 1971 .
[89] B. Datta,et al. Matrix equation, matrix polynomial and the number of zeros of a polynomial inside the unit circle , 1980 .
[90] S. K. Mitter,et al. Algebraic Methods for the Study of Some Linear Matrix Equations , 2001 .
[91] M. Tismenetsky,et al. The Bezoutian and the eigenvalue-separation problem for matrix polynomials , 1982 .
[92] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[93] Peter Lancaster,et al. The theory of matrices , 1969 .
[94] A. M. Li︠a︡punov. Problème général de la stabilité du mouvement , 1949 .
[95] Siegfried H Lehnigk,et al. Stability theorems for linear motions : with an introduction to Liapunov's direct method , 1966 .
[96] Carmen Chicone,et al. A generalization of the inertia theorem for quadratic matrix polynomials , 1998 .
[97] Mark A. Shayman,et al. Inertia theorems for the periodic Liapunov equation and periodic Riccati equation , 1984 .
[98] Abraham Berman,et al. Characterization of acyclic d-stable matrices☆ , 1984 .
[99] S. Barnett,et al. Matrices, polynomials, and linear time-variant systems , 1973 .
[100] Beresford N. Parlett,et al. Use of indefinite pencils for computing damped natural modes , 1990 .
[101] Antony Jameson,et al. Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .
[102] M. Fujiwara,et al. Über die algebraischen Gleichungen, deren Wurzeln in einem Kreise oder in einer Halbebene liegen , 1926 .
[103] J. Snyders,et al. On Nonnegative Solutions of the Equation $AD + DA' = - C$ , 1970 .
[104] Adam W. Bojanczyk,et al. On the stability of the Bareiss and related Toeplitz factorization algorithms , 2010, SIAM J. Matrix Anal. Appl..
[105] M. Naimark,et al. The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations , 1981 .
[106] Lyapunov Revisited: Variations on a Matrix Theme , 1997 .