Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials

We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To be useful for batteries, high performance solid state electrolyte materials must satisfy many requirements at once, an optimization that is difficult to perform experimentally or with computationally expensive ab initio techniques. We first screen 12 831 lithium containing crystalline solids for those with high structural and chemical stability, low electronic conductivity, and low cost. We then develop a data-driven ionic conductivity classification model using logistic regression for identifying which candidate structures are likely to exhibit fast lithium conduction based on experimental measurements reported in the literature. The screening reduces the list of candidate materials from 12 831 down to 21 structures that show promise as electrolytes, few of which have been examined experimentally. We discover that none of our simple atomistic descriptor functions alone provide predictive power for ionic conductivity, but a multi-descriptor model can exhibit a useful degree of predictive power. We also find that screening for structural stability, chemical stability and low electronic conductivity eliminates 92.2% of all Li-containing materials and screening for high ionic conductivity eliminates a further 93.3% of the remainder. Our screening utilizes structures and electronic information contained in the Materials Project database.

[1]  V. Viswanathan,et al.  Rational design of new electrolyte materials for electrochemical double layer capacitors , 2016 .

[2]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[3]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[4]  Ruijuan Xiao,et al.  Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations , 2015 .

[5]  Kota Suzuki,et al.  Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[6]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[7]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[8]  Martin Korth,et al.  Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents. , 2015, Physical chemistry chemical physics : PCCP.

[9]  Christoph Schütter,et al.  Toward New Solvents for EDLCs: From Computational Screening to Electrochemical Validation , 2015 .

[10]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[11]  Kunal Roy,et al.  A Primer on QSAR/QSPR Modeling: Fundamental Concepts , 2015 .

[12]  G. Hwang,et al.  On the origin of the significant difference in lithiation behavior between silicon and germanium , 2014 .

[13]  Efthimios Kaxiras,et al.  Theory of structural transformation in lithiated amorphous silicon. , 2014, Nano letters.

[14]  Wolfgang G. Zeier,et al.  Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li₆MLa₂Ta₂O₁₂. , 2014, ACS applied materials & interfaces.

[15]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[16]  Toshihiro Kasuga,et al.  An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks , 2014 .

[17]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[18]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[19]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .

[20]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[21]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[22]  O. A. V. Lilienfeld,et al.  First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties , 2012, 1209.5033.

[23]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[24]  A. Bouhemadou,et al.  Structural, electronic and elastic properties of the new ternary alkali metal chalcogenides KLiX (X = S, Se and Te) , 2012 .

[25]  Ping Chen,et al.  Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. , 2012, Physical chemistry chemical physics : PCCP.

[26]  Vanchiappan Aravindan,et al.  Lithium-ion conducting electrolyte salts for lithium batteries. , 2011, Chemistry.

[27]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[28]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[30]  Takeshi Kobayashi,et al.  Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 , 2011 .

[31]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[32]  Ping Chen,et al.  Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N , 2010 .

[33]  A. Claassen The crystal structure of the anhydrous alkali monosulphides. I , 2010 .

[34]  H. Abdi,et al.  Principal component analysis , 2010 .

[35]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[36]  H. Oguchi,et al.  Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6 , 2010 .

[37]  A. Remhof,et al.  Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. , 2009, Journal of the American Chemical Society.

[38]  Alejandro Várez,et al.  Li mobility in Li0.5 − xNaxLa0.5TiO3 perovskites (0 ≤ x ≤ 0.5): Influence of structural and compositional parameters , 2009 .

[39]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[40]  Vladislav A. Blatov,et al.  Migration maps of Li+ cations in oxygen-containing compounds , 2008 .

[41]  Koji Yamada,et al.  Substitution effect of ionic conductivity in lithium ion conductor, LI3INBR6 − xCLx , 2008 .

[42]  Lithium calcium imide [Li2Ca(NH)2] for hydrogen storage: structural and thermodynamic properties. , 2008, The journal of physical chemistry. B.

[43]  Z. Wen,et al.  Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique , 2008 .

[44]  A. Hayashi,et al.  Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses , 2008 .

[45]  V. Thangadurai,et al.  Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 , 2007 .

[46]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[47]  Gerta Rücker,et al.  y-Randomization and Its Variants in QSPR/QSAR , 2007, J. Chem. Inf. Model..

[48]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[49]  F. Disalvo,et al.  Reinvestigation of trilithium phosphide, Li3P , 2007 .

[50]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[51]  Koji Yamada,et al.  Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR , 2006 .

[52]  Stefan Adams,et al.  Bond valence analysis of structure-property relationships in solid electrolytes , 2006 .

[53]  W. David,et al.  Synthesis and crystal structure of Li4BH4(NH2)3. , 2006, Chemical communications.

[54]  Jinbo Yang,et al.  Crystal and electronic structures of LiNH2 , 2006 .

[55]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[56]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[57]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[58]  S. Orimo,et al.  Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction , 2004, cond-mat/0406025.

[59]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[60]  Existiert eine Wurtzit‐Modifikation von Lithiumbromid? — Untersuchungen im System LiBr/LiI — , 2004 .

[61]  S. Hull Superionics: crystal structures and conduction processes , 2004 .

[62]  H. Hahn,et al.  Über Versuche zur Umsetzung von Li3N mit Lithiumhalogeniden , 2004, Naturwissenschaften.

[63]  H. Hahn,et al.  Über eine kubische Ag−Sn−Te-Phase , 2004, Naturwissenschaften.

[64]  E. I. Burmakin,et al.  Crystalline Structure and Electroconductivity of Solid Electrolytes Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 , 2003 .

[65]  M. Morcrette,et al.  A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 , 2003 .

[66]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[67]  R. Černý,et al.  Lithium boro-hydride LiBH4 , 2002 .

[68]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[69]  Rufen Chen,et al.  Synthesis of Li3VO4 by the citrate sol–gel method and its ionic conductivity , 2002 .

[70]  Stefan Adams,et al.  Modelling ion conduction pathways by bond valence pseudopotential maps , 2000 .

[71]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[72]  Adams,et al.  Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.

[73]  M. Catti,et al.  Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α'-LiZr2(PO4)3 , 1999 .

[74]  R. Agrawal,et al.  Superionic solid: composite electrolyte phase – an overview , 1999 .

[75]  Structure refinement of lithium ion conductors Li3Sc2(PO4)3 and Li3−2x(Sc1−xMx)2(PO4)3 (M=Ti, Zr) with x=0.10 by neutron diffraction , 1998 .

[76]  F. Berkel,et al.  Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes , 1996 .

[77]  Jeff Dahn,et al.  Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .

[78]  P. Hagenmuller,et al.  Ionic conductivity-enhancement of LiCl by homogeneous and heterogeneous dopings , 1993 .

[79]  H. D. Lutz,et al.  Mößbauer- und Neutronenbeugungs-Messungen an Li6FeCl8 , 1993 .

[80]  H. D. Lutz,et al.  Kristallstrukturen von Li6MgBr8 und Li2MgBr4/Crystal Structure of Li6MgBr8 and Li2MgBr4 , 1993 .

[81]  P. Bruce,et al.  Defect clustering in the superionic conductor lithium germanium vanadate , 1991 .

[82]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[83]  P. Bruce,et al.  A re-examination of the lisicon structure using high-resolution powder neutron diffraction: evidence for defect clustering , 1989 .

[84]  G. Nazri Preparation, structure and ionic conductivity of lithium phosphide , 1989 .

[85]  P. Bruce,et al.  Structure determination of LISICON solid solutions by powder neutron diffraction , 1988 .

[86]  R. Hofmann,et al.  Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4) , 1987 .

[87]  H. D. Lutz,et al.  Neue Lithiumchlorid‐Suzukiphasen: Li6MCl8(M = Fe, Co, Ni) , 1987 .

[88]  P. Hagenmuller,et al.  Ionic Conductivity and Phase Transition of the Bromide Spinels, Li2 − 2x M 1 + x Br4 ( M = Mg , Mn ) , 1986 .

[89]  A. Fitch,et al.  The structure of Li3.4Si0.7S0.3O4 by powder neutron diffraction , 1984 .

[90]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[91]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[92]  P. Hagenmuller,et al.  Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .

[93]  W. H. Baur,et al.  The crystal structure of Li3.75Si0.75P0.25O4 and ionic conductivity in tetrahedral structures , 1982 .

[94]  Y. Takeda,et al.  Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd) , 1981 .

[95]  W. Schmidt,et al.  Chloride spinels: A new group of solid lithium electrolytes , 1981 .

[96]  Lithium Nitride Halides—New Solid Electrolytes with High Li+ Ion Conductivity , 1980 .

[97]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[98]  W. Jeitschko,et al.  Crystal Structure and Ionic Conductivity of Li Boracites , 1977 .

[99]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[100]  A. Rabenau,et al.  Re-evaluation of the lithium nitride structure , 1976 .

[101]  R. Huggins,et al.  Lithium ion conduction in Li5A104, Li5GaO4 and Li6ZnO4 , 1976 .

[102]  R. Huggins,et al.  Ionic conductivity of Li4GeO4, Li2GeO3 and Li2Ge7O15 , 1976 .

[103]  R. D. Shannon,et al.  Refinement of the crystal structure of low temperature Li3VO4 and analysis of mean bond lengths in phosphates, arsenates, and vanadates , 1973 .

[104]  B. Post,et al.  Crystal structure of lithium aluminum hydride , 1967 .