Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials
暂无分享,去创建一个
Ekin D. Cubuk | Evan J. Reed | Yi Cui | E. D. Cubuk | Yi Cui | E. Reed | Austin D. Sendek | Qian Yang | Karel-Alexander N. Duerloo | Qian Yang
[1] V. Viswanathan,et al. Rational design of new electrolyte materials for electrochemical double layer capacitors , 2016 .
[2] Paul Raccuglia,et al. Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.
[3] Gerbrand Ceder,et al. Interface Stability in Solid-State Batteries , 2016 .
[4] Ruijuan Xiao,et al. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations , 2015 .
[5] Kota Suzuki,et al. Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.
[6] B. McCloskey,et al. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.
[7] S. Ong,et al. Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.
[8] Martin Korth,et al. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents. , 2015, Physical chemistry chemical physics : PCCP.
[9] Christoph Schütter,et al. Toward New Solvents for EDLCs: From Computational Screening to Electrochemical Validation , 2015 .
[10] Lei Cheng,et al. The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .
[11] Kunal Roy,et al. A Primer on QSAR/QSPR Modeling: Fundamental Concepts , 2015 .
[12] G. Hwang,et al. On the origin of the significant difference in lithiation behavior between silicon and germanium , 2014 .
[13] Efthimios Kaxiras,et al. Theory of structural transformation in lithiated amorphous silicon. , 2014, Nano letters.
[14] Wolfgang G. Zeier,et al. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li₆MLa₂Ta₂O₁₂. , 2014, ACS applied materials & interfaces.
[15] Alok Choudhary,et al. Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .
[16] Toshihiro Kasuga,et al. An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks , 2014 .
[17] K. Fujimura,et al. Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .
[18] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[19] Jürgen Köhler,et al. Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .
[20] C. Liang,et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.
[21] Anubhav Jain,et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .
[22] O. A. V. Lilienfeld,et al. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties , 2012, 1209.5033.
[23] L. Daemen,et al. Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.
[24] A. Bouhemadou,et al. Structural, electronic and elastic properties of the new ternary alkali metal chalcogenides KLiX (X = S, Se and Te) , 2012 .
[25] Ping Chen,et al. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. , 2012, Physical chemistry chemical physics : PCCP.
[26] Vanchiappan Aravindan,et al. Lithium-ion conducting electrolyte salts for lithium batteries. , 2011, Chemistry.
[27] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[28] Krishna Rajan,et al. Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[29] Martin Fisch,et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.
[30] Takeshi Kobayashi,et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 , 2011 .
[31] G. Ceder,et al. Efficient band gap prediction for solids. , 2010, Physical review letters.
[32] Ping Chen,et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N , 2010 .
[33] A. Claassen. The crystal structure of the anhydrous alkali monosulphides. I , 2010 .
[34] H. Abdi,et al. Principal component analysis , 2010 .
[35] Anubhav Jain,et al. Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .
[36] H. Oguchi,et al. Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6 , 2010 .
[37] A. Remhof,et al. Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. , 2009, Journal of the American Chemical Society.
[38] Alejandro Várez,et al. Li mobility in Li0.5 − xNaxLa0.5TiO3 perovskites (0 ≤ x ≤ 0.5): Influence of structural and compositional parameters , 2009 .
[39] Jing Xu,et al. Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .
[40] Vladislav A. Blatov,et al. Migration maps of Li+ cations in oxygen-containing compounds , 2008 .
[41] Koji Yamada,et al. Substitution effect of ionic conductivity in lithium ion conductor, LI3INBR6 − xCLx , 2008 .
[42] Lithium calcium imide [Li2Ca(NH)2] for hydrogen storage: structural and thermodynamic properties. , 2008, The journal of physical chemistry. B.
[43] Z. Wen,et al. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique , 2008 .
[44] A. Hayashi,et al. Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses , 2008 .
[45] V. Thangadurai,et al. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 , 2007 .
[46] Venkataraman Thangadurai,et al. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .
[47] Gerta Rücker,et al. y-Randomization and Its Variants in QSPR/QSAR , 2007, J. Chem. Inf. Model..
[48] S. Adams,et al. Crystal structure of a superionic conductor, Li7P3S11 , 2007 .
[49] F. Disalvo,et al. Reinvestigation of trilithium phosphide, Li3P , 2007 .
[50] Shengbo Zhang. A review on electrolyte additives for lithium-ion batteries , 2006 .
[51] Koji Yamada,et al. Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR , 2006 .
[52] Stefan Adams,et al. Bond valence analysis of structure-property relationships in solid electrolytes , 2006 .
[53] W. David,et al. Synthesis and crystal structure of Li4BH4(NH2)3. , 2006, Chemical communications.
[54] Jinbo Yang,et al. Crystal and electronic structures of LiNH2 , 2006 .
[55] E. Cussen. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.
[56] M. Wohlfahrt‐Mehrens,et al. Ageing mechanisms in lithium-ion batteries , 2005 .
[57] Charles W. Monroe,et al. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .
[58] S. Orimo,et al. Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction , 2004, cond-mat/0406025.
[59] Venkataraman Thangadurai,et al. Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .
[60] Existiert eine Wurtzit‐Modifikation von Lithiumbromid? — Untersuchungen im System LiBr/LiI — , 2004 .
[61] S. Hull. Superionics: crystal structures and conduction processes , 2004 .
[62] H. Hahn,et al. Über Versuche zur Umsetzung von Li3N mit Lithiumhalogeniden , 2004, Naturwissenschaften.
[63] H. Hahn,et al. Über eine kubische Ag−Sn−Te-Phase , 2004, Naturwissenschaften.
[64] E. I. Burmakin,et al. Crystalline Structure and Electroconductivity of Solid Electrolytes Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 , 2003 .
[65] M. Morcrette,et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 , 2003 .
[66] Venkataraman Thangadurai,et al. Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .
[67] R. Černý,et al. Lithium boro-hydride LiBH4 , 2002 .
[68] P. Luksch,et al. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.
[69] Rufen Chen,et al. Synthesis of Li3VO4 by the citrate sol–gel method and its ionic conductivity , 2002 .
[70] Stefan Adams,et al. Modelling ion conduction pathways by bond valence pseudopotential maps , 2000 .
[71] D. Aurbach. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .
[72] Adams,et al. Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.
[73] M. Catti,et al. Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α'-LiZr2(PO4)3 , 1999 .
[74] R. Agrawal,et al. Superionic solid: composite electrolyte phase – an overview , 1999 .
[76] F. Berkel,et al. Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes , 1996 .
[77] Jeff Dahn,et al. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .
[78] P. Hagenmuller,et al. Ionic conductivity-enhancement of LiCl by homogeneous and heterogeneous dopings , 1993 .
[79] H. D. Lutz,et al. Mößbauer- und Neutronenbeugungs-Messungen an Li6FeCl8 , 1993 .
[80] H. D. Lutz,et al. Kristallstrukturen von Li6MgBr8 und Li2MgBr4/Crystal Structure of Li6MgBr8 and Li2MgBr4 , 1993 .
[81] P. Bruce,et al. Defect clustering in the superionic conductor lithium germanium vanadate , 1991 .
[82] M. Green. Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .
[83] P. Bruce,et al. A re-examination of the lisicon structure using high-resolution powder neutron diffraction: evidence for defect clustering , 1989 .
[84] G. Nazri. Preparation, structure and ionic conductivity of lithium phosphide , 1989 .
[85] P. Bruce,et al. Structure determination of LISICON solid solutions by powder neutron diffraction , 1988 .
[86] R. Hofmann,et al. Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4) , 1987 .
[87] H. D. Lutz,et al. Neue Lithiumchlorid‐Suzukiphasen: Li6MCl8(M = Fe, Co, Ni) , 1987 .
[88] P. Hagenmuller,et al. Ionic Conductivity and Phase Transition of the Bromide Spinels, Li2 − 2x M 1 + x Br4 ( M = Mg , Mn ) , 1986 .
[89] A. Fitch,et al. The structure of Li3.4Si0.7S0.3O4 by powder neutron diffraction , 1984 .
[90] M. Tachez,et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .
[91] P. Bruce,et al. The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .
[92] P. Hagenmuller,et al. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .
[93] W. H. Baur,et al. The crystal structure of Li3.75Si0.75P0.25O4 and ionic conductivity in tetrahedral structures , 1982 .
[94] Y. Takeda,et al. Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd) , 1981 .
[95] W. Schmidt,et al. Chloride spinels: A new group of solid lithium electrolytes , 1981 .
[96] Lithium Nitride Halides—New Solid Electrolytes with High Li+ Ion Conductivity , 1980 .
[97] H. Hong,et al. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .
[98] W. Jeitschko,et al. Crystal Structure and Ionic Conductivity of Li Boracites , 1977 .
[99] R. D. Shannon,et al. New Li solid electrolytes , 1977 .
[100] A. Rabenau,et al. Re-evaluation of the lithium nitride structure , 1976 .
[101] R. Huggins,et al. Lithium ion conduction in Li5A104, Li5GaO4 and Li6ZnO4 , 1976 .
[102] R. Huggins,et al. Ionic conductivity of Li4GeO4, Li2GeO3 and Li2Ge7O15 , 1976 .
[103] R. D. Shannon,et al. Refinement of the crystal structure of low temperature Li3VO4 and analysis of mean bond lengths in phosphates, arsenates, and vanadates , 1973 .
[104] B. Post,et al. Crystal structure of lithium aluminum hydride , 1967 .