Inverse problems: A Bayesian perspective

The subject of inverse problems in differential equations is of enormous practical importance, and has also generated substantial mathematical and computational innovation. Typically some form of regularization is required to ameliorate ill-posed behaviour. In this article we review the Bayesian approach to regularization, developing a function space viewpoint on the subject. This approach allows for a full characterization of all possible solutions, and their relative probabilities, whilst simultaneously forcing significant modelling issues to be addressed in a clear and precise fashion. Although expensive to implement, this approach is starting to lie within the range of the available computational resources in many application areas. It also allows for the quantification of uncertainty and risk, something which is increasingly demanded by these applications. Furthermore, the approach is conceptually important for the understanding of simpler, computationally expedient approaches to inverse problems.

[1]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[2]  I. M. Navon,et al.  Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes , 2009 .

[3]  A. Neubauer,et al.  Convergence results for the Bayesian inversion theory , 2008 .

[4]  Andreas Neubauer,et al.  On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces , 2009 .

[5]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[6]  P. Bickel,et al.  Curse-of-dimensionality revisited : Collapse of importance sampling in very large scale systems , 2005 .

[7]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .

[8]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[9]  James C. Robinson,et al.  Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .

[10]  Bernard W. Silverman,et al.  Functional Data Analysis , 1997 .

[11]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[12]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[13]  B. L. Ellerbroek,et al.  Inverse problems in astronomical adaptive optics , 2009 .

[14]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[15]  A. Stuart,et al.  ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.

[16]  Chong Gu Smoothing noisy data via regularization: statistical perspectives , 2008 .

[17]  Martin Hairer,et al.  Sampling conditioned hypoelliptic diffusions , 2009, 0908.0162.

[18]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[19]  Daniela Calvetti,et al.  Hypermodels in the Bayesian imaging framework , 2008 .

[20]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[21]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[22]  G. J. Shutts,et al.  Towards the Probabilistic Earth-System Model , 2008 .

[23]  D. Calvetti,et al.  Priorconditioners for linear systems , 2005 .

[24]  Dan Cornford,et al.  A variational radial basis function approximation for diffusion processes , 2009, ESANN.

[25]  P. Kitanidis,et al.  A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification , 2003 .

[26]  Ben G. Fitzpatrick,et al.  Bayesian analysis in inverse problems , 1991 .

[27]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[28]  Mike Christie,et al.  Simulation error models for improved reservoir prediction , 2006, Reliab. Eng. Syst. Saf..

[29]  K. Ide,et al.  Lagrangian data assimilation for point vortex systems , 2002 .

[30]  Geoff K. Nicholls,et al.  Statistical inversion of South Atlantic circulation in an abyssal neutral density layer , 2005 .

[31]  Yalchin Efendiev,et al.  Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques , 2009 .

[32]  Ionel M. Navon,et al.  The Maximum Likelihood Ensemble Filter as a non‐differentiable minimization algorithm , 2008 .

[33]  Kayo Ide,et al.  Using flow geometry for drifter deployment in Lagrangian data assimilation , 2008 .

[34]  A. Dembo,et al.  A maximum a posteriori estimator for trajectories of diffusion processes , 1987 .

[35]  Nancy Nichols,et al.  The Assimilation of Satellite Derived Sea Surface Temperatures into a Diurnal Cycle Model , 2008 .

[36]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[37]  Daniela Calvetti,et al.  Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective , 2007 .

[38]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[39]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[40]  Daniela Calvetti,et al.  A Gaussian hypermodel to recover blocky objects , 2007 .

[41]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[42]  Daniela Calvetti,et al.  Bayesian flux balance analysis applied to a skeletal muscle metabolic model. , 2007, Journal of theoretical biology.

[43]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results , 2007 .

[44]  C. C. Pain,et al.  Reduced‐order modelling of an adaptive mesh ocean model , 2009 .

[45]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[46]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[47]  Arthur Veldman,et al.  NUMERICAL METHODS FOR FLUID DYNAMICS 4 , 1993 .

[48]  Hanna K. Pikkarainen,et al.  Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise , 2009 .

[49]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[50]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[51]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[52]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[53]  Harri Hakula,et al.  Conditionally Gaussian Hypermodels for Cerebral Source Localization , 2008, SIAM J. Imaging Sci..

[54]  A. Stuart,et al.  Conditional Path Sampling of SDEs and the Langevin MCMC Method , 2004 .

[55]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[56]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[57]  Andrew M. Stuart,et al.  A Bayesian approach to Lagrangian data assimilation , 2008 .

[58]  L. W. White A study of uniqueness for the initialization problem for Burgers' equation , 1993 .

[59]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[60]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[61]  A. Stuart,et al.  Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods , 2011 .

[62]  Nancy Nichols,et al.  An investigation of incremental 4D‐Var using non‐tangent linear models , 2005 .

[63]  Nancy Nichols,et al.  A singular vector perspective of 4D‐Var: Filtering and interpolation , 2005 .

[64]  Michael Andrew Christie,et al.  Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification , 2010 .

[65]  P. J. van Leeuwen,et al.  Parameter estimation using a particle method : Inferring mixing coefficients from sea level observations , 2007 .

[66]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[67]  C. R. Hagelberg,et al.  Local existence results for the generalized inverse of the vorticity equation in the plane , 1996 .

[68]  Erkki Somersalo,et al.  Linear inverse problems for generalised random variables , 1989 .

[69]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[70]  Leonard A. Smith,et al.  Nonlinear Processes in Geophysics Model Error in Weather Forecasting , 2022 .

[71]  M. Lifshits Gaussian Random Functions , 1995 .

[72]  Sebastian Reich,et al.  Localization techniques for ensemble transform Kalman filters , 2009 .

[73]  J. Voss,et al.  Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .

[74]  Detlef Dürr,et al.  The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process , 1978 .

[75]  Nancy Nichols,et al.  Modelling of forecast errors in geophysical fluid flows , 2008 .

[76]  Andreas Hofinger,et al.  Convergence rate for the Bayesian approach to linear inverse problems , 2007 .

[77]  E. Zuazua,et al.  Propagation, Observation, Control and Numerical Approximation of Waves , 2003 .

[78]  Nancy Nichols,et al.  Weak constraints in four-dimensional variational data assimilation , 2007 .

[79]  K. Ide,et al.  A Method for Assimilation of Lagrangian Data , 2003 .

[80]  G. Evensen,et al.  An ensemble Kalman smoother for nonlinear dynamics , 2000 .

[81]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[82]  G. Evensen,et al.  Parameter estimation solving a weak constraint variational formulation for an Ekman model , 1997 .

[83]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[84]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[85]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[86]  Lisan Yu,et al.  Variational Estimation of the Wind Stress Drag Coefficient and the Oceanic Eddy Viscosity Profile , 1991 .

[87]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[88]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[89]  Milija Zupanski,et al.  Comparison of sequential data assimilation methods for the Kuramoto–Sivashinsky equation , 2009 .

[90]  A. Budhiraja,et al.  Modified particle filter methods for assimilating Lagrangian data into a point-vortex model , 2008 .

[91]  Nancy Nichols,et al.  Inner-Loop Stopping Criteria for Incremental Four-Dimensional Variational Data Assimilation , 2006 .

[92]  Nancy Nichols,et al.  DATA ASSIMILATION: AIMS AND BASIC CONCEPTS , 2003 .

[93]  Nancy Nichols,et al.  Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation , 2008 .

[94]  E. Kalnay,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[95]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[96]  Michael Andrew Christie,et al.  Simplicity, complexity and modelling , 2011 .

[97]  Gareth Roberts,et al.  Optimal scalings for local Metropolis--Hastings chains on nonproduct targets in high dimensions , 2009, 0908.0865.

[98]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[99]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[100]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[101]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[102]  J. Mason,et al.  Algorithms for approximation , 1987 .

[103]  Georg A. Gottwald,et al.  A variance constraining Kalman filter , 2009 .

[104]  Daniela Calvetti,et al.  Sampling-Based Analysis of a Spatially Distributed Model for Liver Metabolism at Steady State , 2008, Multiscale Model. Simul..

[105]  Paul Krause,et al.  Dimensional reduction for a Bayesian filter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[106]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[107]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[108]  Hanna K. Pikkarainen,et al.  Convergence rates for the Bayesian approach to linear inverse problems , 2006 .

[109]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[110]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[111]  Andrew J. Majda,et al.  Mathematical strategies for filtering turbulent dynamical systems , 2010 .

[112]  H. Pikkarainen,et al.  State estimation approach to nonstationary inverse problems: discretization error and filtering problem , 2006 .

[113]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[114]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[115]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[116]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[117]  M. Loève Probability Theory II , 1978 .

[118]  D. Zupanski A General Weak Constraint Applicable to Operational 4DVAR Data Assimilation Systems , 1997 .

[119]  Yalchin Efendiev,et al.  An Efficient Two-Stage Sampling Method for Uncertainty Quantification in History Matching Geological Models , 2008 .

[120]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[121]  Yuedong Wang Smoothing Spline ANOVA , 2011 .

[122]  Nancy Nichols,et al.  Modeling the diurnal variability of sea surface temperatures , 2008 .

[123]  Martin Hairer,et al.  Sampling conditioned diffusions , 2009 .

[124]  Nancy Nichols,et al.  Approximate Gauss–Newton methods for optimal state estimation using reduced‐order models , 2008 .

[125]  B. Øksendal Stochastic Differential Equations , 1985 .

[126]  P. Bickel,et al.  Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.

[127]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[128]  Nando de Freitas,et al.  Sequential Monte Carlo in Practice , 2001 .

[129]  A. Stuart,et al.  Computational Complexity of Metropolis-Hastings Methods in High Dimensions , 2009 .

[130]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[131]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[132]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[133]  Daniela Calvetti,et al.  Statistical elimination of boundary artefacts in image deblurring , 2005 .

[134]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[135]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[136]  Dan Cornford,et al.  Variational Inference for Diffusion Processes , 2007, NIPS.

[137]  Nancy Nichols,et al.  Variational data assimilation for Hamiltonian problems , 2005 .

[138]  Jens Schröter,et al.  Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments , 2005 .

[139]  Robert N. Miller,et al.  Weighting Initial Conditions in Variational Assimilation Schemes , 1991 .

[140]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[141]  Tiangang Cui,et al.  Using MCMC Sampling to Calibrate a Computer Model of a Geothermal Field , 2009 .

[142]  G. Wahba Spline models for observational data , 1990 .

[143]  M. Piggott,et al.  International Journal for Numerical Methods in Fluids a Fully Non-linear Model for Three-dimensional Overturning Waves over an Arbitrary Bottom , 2009 .

[144]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[145]  A. Stuart,et al.  Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .

[146]  J. M. Sanz-Serna,et al.  A general equivalence theorem in the theory of discretization methods , 1985 .

[147]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[148]  Dan Cornford,et al.  A Comparison of Variational and Markov Chain Monte Carlo Methods for Inference in Partially Observed Stochastic Dynamic Systems , 2007, J. Signal Process. Syst..

[149]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[150]  J. Kaipio,et al.  Approximation errors in nonstationary inverse problems , 2007 .

[151]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[152]  Daniela Calvetti,et al.  Large-Scale Statistical Parameter Estimation in Complex Systems with an Application to Metabolic Models , 2006, Multiscale Model. Simul..

[153]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[154]  Andrew J Majda,et al.  Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems , 2007, Proceedings of the National Academy of Sciences.

[155]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[156]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[157]  Radu Herbei,et al.  Hybrid Samplers for Ill‐Posed Inverse Problems , 2009 .

[158]  C. Farmer Geological Modelling and Reservoir Simulation , 2005 .

[159]  Janne M. J. Huttunen,et al.  Discretization error in dynamical inverse problems: one-dimensional model case , 2007 .

[160]  Nancy Nichols,et al.  Assessment of wind‐stress errors using bias corrected ocean data assimilation , 2004 .

[161]  Andrew J. Majda,et al.  A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS ∗ , 2008 .

[162]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[163]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[164]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[165]  Nancy Nichols,et al.  Use of potential vorticity for incremental data assimilation , 2006 .

[166]  I. Michael Navon,et al.  The analysis of an ill-posed problem using multi-scale resolution and second-order adjoint techniques , 2001 .

[167]  W. Budgell,et al.  Ocean Data Assimilation and the Moan Filter: Spatial Regularity , 1987 .

[168]  G. Backus,et al.  Inference from inadequate and inaccurate data, I. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[169]  James C. Robinson,et al.  A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations , 2007, 0710.5708.

[170]  Michael Andrew Christie,et al.  Use of solution error models in history matching , 2008 .

[171]  A. Mandelbaum,et al.  Linear estimators and measurable linear transformations on a Hilbert space , 1984 .

[172]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[173]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[174]  G. Backus,et al.  Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[175]  A. Morelli Inverse Problem Theory , 2010 .

[176]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[177]  Chris L. Farmer,et al.  Bayesian Field Theory Applied to Scattered Data Interpolation and Inverse Problems , 2007 .

[178]  G. Grimmett,et al.  Probability and random processes , 2002 .

[179]  Nancy Nichols,et al.  Estimation of systematic error in an equatorial ocean model using data assimilation , 2002 .

[180]  B. Kaltenbacher,et al.  Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems , 2009 .

[181]  Martin Hairer,et al.  An Introduction to Stochastic PDEs , 2009, 0907.4178.

[182]  Nancy Nichols,et al.  Approximate iterative methods for variational data assimilation , 2005 .

[183]  Michel Loève,et al.  Probability Theory I , 1977 .

[184]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[185]  L. Mark Berliner,et al.  Monte Carlo Based Ensemble Forecasting , 2001, Stat. Comput..

[186]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[187]  Andrew M. Stuart,et al.  Data assimilation: Mathematical and statistical perspectives , 2008 .

[188]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[189]  Chong Gu Smoothing Spline Anova Models , 2002 .

[190]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[191]  Nancy Nichols,et al.  Treating Model Error in 3-D and 4-D Data Assimilation , 2003 .

[192]  Torsten Hein,et al.  On Tikhonov regularization in Banach spaces – optimal convergence rates results , 2009 .

[193]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[194]  Maëlle Nodet Assimilation of Lagrangian data in oceanography , 2006 .

[195]  A. O’Sullivan,et al.  Error models for reducing history match bias , 2006 .

[196]  Radu Herbei,et al.  Gyres and Jets: Inversion of Tracer Data for Ocean Circulation Structure , 2008 .

[197]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[198]  D. Nychka Data Assimilation” , 2006 .

[199]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[200]  Dan Cornford,et al.  Gaussian Process Approximations of Stochastic Differential Equations , 2007, Gaussian Processes in Practice.

[201]  Yoon-ha Lee,et al.  Uncertainty Quantification for Multiscale Simulations , 2002 .

[202]  Boon S. Chua,et al.  Open-ocean modeling as an inverse problem: the primitive equations , 1994 .

[203]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[204]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[205]  Gunther Uhlmann,et al.  Visibility and invisibility , 2009 .

[206]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[207]  Victor Shutyaev,et al.  Data assimilation for the earth system , 2003 .

[208]  Nancy Nichols,et al.  A Singular Vector Perspective of 4DVAR: The Spatial Structure and Evolution of Baroclinic Weather Systems , 2006 .

[209]  Nancy Nichols,et al.  Adjoint methods for treating model error in data assimilation , 1998 .

[210]  D. A. Zimmerman,et al.  A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow , 1998 .

[211]  A. Stuart,et al.  MCMC methods for sampling function space , 2009 .

[212]  M. Nodet Variational assimilation of Lagrangian data in oceanography , 2007, 0804.1137.

[213]  A. Majda,et al.  Catastrophic filter divergence in filtering nonlinear dissipative systems , 2010 .

[214]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[215]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[216]  Peter Jan van Leeuwen,et al.  An Ensemble Smoother with Error Estimates , 2001 .

[217]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[218]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[219]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[220]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[221]  Eric Vanden-Eijnden,et al.  Invariant measures of stochastic partial differential equations and conditioned diffusions , 2005 .

[222]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[223]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[224]  Serge Gratton,et al.  Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems , 2007, SIAM J. Optim..

[225]  Stefan Kindermann,et al.  Convergence rates in the Prokhorov metric for assessing uncertainty in ill-posed problems , 2005 .

[226]  Nancy Nichols,et al.  Application of variational data assimilation to the Lorenz equations using the adjoint method , 1998 .

[227]  G Backus Inference from Inadequate and Inaccurate Data, II. , 1970, Proceedings of the National Academy of Sciences of the United States of America.