Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement

Flexible torsion angle-based NCS restraints have been implemented in phenix.refine, allowing improved model refinement at all resolutions. Rotamer correction and rotamer consistency checks between NCS-related amino-acid side chains further improve the final model quality.

[1]  E J Dodson,et al.  Determination and restrained least-squares refinement of the structures of ribonuclease Sa and its complex with 3'-guanylic acid at 1.8 A resolution. , 1991, Acta crystallographica. Section B, Structural science.

[2]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[3]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[4]  Vincent B. Chen,et al.  KING (Kinemage, Next Generation): A versatile interactive molecular and scientific visualization program , 2009, Protein science : a publication of the Protein Society.

[5]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .

[6]  Bruce Randall Donald,et al.  Algorithm for backrub motions in protein design , 2008, ISMB.

[7]  C. Pickart,et al.  Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.

[8]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[9]  Paul D Adams,et al.  Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.

[10]  Z Dauter,et al.  1.7 A structure of the stabilized REIv mutant T39K. Application of local NCS restraints. , 1999, Acta crystallographica. Section D, Biological crystallography.

[11]  Alexandre Urzhumtsev,et al.  FROG– high‐speed restraint–constraint refinement program for macromolecular structure , 1989 .

[12]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[13]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[14]  Helen M Berman,et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.

[15]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[16]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[17]  M G Rossmann,et al.  The molecular replacement method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[18]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[19]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[20]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[21]  Paul D. Adams,et al.  iotbx.cif: a comprehensive CIF toolbox , 2011, Journal of applied crystallography.

[22]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[23]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[24]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[25]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[26]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[29]  Thomas C Terwilliger,et al.  Automated structure solution, density modification and model building. , 2002, Acta crystallographica. Section D, Biological crystallography.

[30]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[31]  Jeffrey J. Headd,et al.  Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place , 2008, Journal of Structural and Functional Genomics.

[32]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Dennis,et al.  Techniques for nonlinear least squares and robust regression , 1978 .

[34]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[35]  L. Wyns,et al.  Complex of ribonuclease Sa with a cyclic nucleotide and a proposed model for the reaction intermediate. , 1993, European journal of biochemistry.

[36]  M. Luo,et al.  Structural genomics of Caenorhabditis elegans: Triosephosphate isomerase , 2002, Proteins.

[37]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[38]  Fei Long,et al.  Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.

[39]  Bruce Randall Donald,et al.  The Role of Local Backrub Motions in Evolved and Designed Mutations , 2012, PLoS Comput. Biol..

[40]  Ian W. Davis,et al.  The backrub motion: how protein backbone shrugs when a sidechain dances. , 2006, Structure.