Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement
暂无分享,去创建一个
Paul D. Adams | Nathaniel Echols | Pavel V. Afonine | Jeffrey J. Headd | Nigel W. Moriarty | Richard J. Gildea | P. Adams | J. Headd | N. Echols | P. Afonine | N. Moriarty | R. Gildea
[1] E J Dodson,et al. Determination and restrained least-squares refinement of the structures of ribonuclease Sa and its complex with 3'-guanylic acid at 1.8 A resolution. , 1991, Acta crystallographica. Section B, Structural science.
[2] Randy J. Read,et al. Phaser crystallographic software , 2007, Journal of applied crystallography.
[3] K Schulten,et al. VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.
[4] Vincent B. Chen,et al. KING (Kinemage, Next Generation): A versatile interactive molecular and scientific visualization program , 2009, Protein science : a publication of the Protein Society.
[5] G. Bricogne,et al. Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .
[6] Bruce Randall Donald,et al. Algorithm for backrub motions in protein design , 2008, ISMB.
[7] C. Pickart,et al. Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.
[8] Vincent B. Chen,et al. Correspondence e-mail: , 2000 .
[9] Paul D Adams,et al. Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.
[10] Z Dauter,et al. 1.7 A structure of the stabilized REIv mutant T39K. Application of local NCS restraints. , 1999, Acta crystallographica. Section D, Biological crystallography.
[11] Alexandre Urzhumtsev,et al. FROG– high‐speed restraint–constraint refinement program for macromolecular structure , 1989 .
[12] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[13] Ian W. Davis,et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.
[14] Helen M Berman,et al. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.
[15] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[16] 良二 上田. J. Appl. Cryst.の発刊に際して , 1970 .
[17] M G Rossmann,et al. The molecular replacement method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.
[18] J. Richardson,et al. The penultimate rotamer library , 2000, Proteins.
[19] A. Brunger. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .
[20] Brian W. Matthews,et al. An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .
[21] Paul D. Adams,et al. iotbx.cif: a comprehensive CIF toolbox , 2011, Journal of applied crystallography.
[22] P. Zwart,et al. Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.
[23] G. N. Ramachandran,et al. Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.
[24] 김삼묘,et al. “Bioinformatics” 특집을 내면서 , 2000 .
[25] R J Read,et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.
[26] Randy J. Read,et al. Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .
[27] P. Emsley,et al. Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.
[28] Paul D. Adams,et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.
[29] Thomas C Terwilliger,et al. Automated structure solution, density modification and model building. , 2002, Acta crystallographica. Section D, Biological crystallography.
[30] Clemens Vonrhein,et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.
[31] Jeffrey J. Headd,et al. Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place , 2008, Journal of Structural and Functional Genomics.
[32] N. Pannu,et al. REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.
[33] J. Dennis,et al. Techniques for nonlinear least squares and robust regression , 1978 .
[34] W. Hendrickson. Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.
[35] L. Wyns,et al. Complex of ribonuclease Sa with a cyclic nucleotide and a proposed model for the reaction intermediate. , 1993, European journal of biochemistry.
[36] M. Luo,et al. Structural genomics of Caenorhabditis elegans: Triosephosphate isomerase , 2002, Proteins.
[37] G. Kleywegt. Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.
[38] Fei Long,et al. Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.
[39] Bruce Randall Donald,et al. The Role of Local Backrub Motions in Evolved and Designed Mutations , 2012, PLoS Comput. Biol..
[40] Ian W. Davis,et al. The backrub motion: how protein backbone shrugs when a sidechain dances. , 2006, Structure.