Smooth motion generation for unicycle mobile robots via dynamic path inversion

A new motion-generation approach is proposed for wheeled mobile robots described by the unicycle kinematic model. This approach permits the generation of smooth continuous-acceleration controls using a dynamic path-inversion procedure that exploits the concept of G/sup 3/ -paths, i.e., Cartesian paths with third-order geometric continuity (both the curvature function and its derivative, with respect to the arc length, are continuous). The exposed steering method is well suited to be adopted for the robot's iterative steering within a supervisory control architecture for sensor-based autonomous navigation. A worked example illustrates the approach.

[1]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[2]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[3]  Kazuo Tanie,et al.  Trajectory Design and Control of a Wheel-type Mobile Robot Using B-spline Curve , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[4]  Hideki Ogawa,et al.  A volleyball playing robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[5]  Giuseppe Oriolo,et al.  Stabilization via iterative state steering with application to chained-form systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[6]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[7]  Nasser Houshangi,et al.  Control of a robotic manipulator to grasp a moving target using vision , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  Tsutomu Kimoto,et al.  Manipulator control with image-based visual servo , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[9]  A. Piazzi,et al.  Velocity planning for autonomous vehicles , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[10]  L.E. de Souza,et al.  AI planning in supervisory control systems , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[11]  Adam W. Hoover,et al.  A real-time occupancy map from multiple video streams , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Yutaka Kanayama,et al.  Smooth local path planning for autonomous vehicles , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[13]  C. Hsiung A first course in differential geometry , 1981 .

[14]  Byung Kook Kim,et al.  Visual Servo Control Algorithm for Soccer Robots Considering Time-Delay , 2000, Intell. Autom. Soft Comput..

[15]  Ian D. Walker,et al.  A new generic model for vision based tracking in robotics systems , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[16]  Aurelio Piazzi,et al.  Quintic G2-splines for the iterative steering ofvision-based autonomous vehicles , 2002, IEEE Trans. Intell. Transp. Syst..

[17]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[18]  Jacques Gangloff,et al.  Visual servoing of a 6-DOF manipulator for unknown 3-d profile following , 1999, IEEE Trans. Robotics Autom..

[19]  Ian D. Walker,et al.  Experiments using a sensor network, based workcell for industrial robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Jean-Paul Laumond,et al.  Primitives for smoothing mobile robot trajectories , 1995, IEEE Trans. Robotics Autom..

[21]  Ian D. Walker,et al.  Sensor network based workcell for industrial robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[22]  Brian A. Barsky,et al.  Local Control of Bias and Tension in Beta-splines , 1983, TOGS.

[23]  David W. Capson,et al.  Multiple camera model-based 3-D visual servo , 2000, IEEE Trans. Robotics Autom..

[24]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[25]  A. Piazzi,et al.  G3-splines for the path planning of wheeled mobile robots , 2003, 2003 European Control Conference (ECC).

[26]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[27]  Peter I. Corke,et al.  Dynamic effects in visual closed-loop systems , 1996, IEEE Trans. Robotics Autom..

[28]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[29]  Winston Nelson,et al.  Continuous-curvature paths for autonomous vehicles , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[30]  Jörg Peters,et al.  Geometric Continuity , 2002, Handbook of Computer Aided Geometric Design.

[31]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[32]  Peter I. Corke,et al.  Dynamic effects in high-performance visual servoing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[33]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[34]  J. A. Gregory Geometric continuity , 1989 .

[35]  Fumio Miyazaki,et al.  Realization of the table tennis task based on virtual targets , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[36]  Katsushi Ikeuchi,et al.  Trajectory generation with curvature constraint based on energy minimization , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.