Computational complexity of norm-maximization

This paper discusses the problem of maximizing a quasiconvex functionφ over a convex polytopeP inn-space that is presented as the intersection of a finite number of halfspaces. The problem is known to beNP-hard (for variablen) whenφ is thepth power of the classicalp-norm. The present reexamination of the problem establishesNP-hardness for a wider class of functions, and for thep-norm it proves theNP-hardness of maximization overn-dimensionalparallelotopes that are centered at the origin or have a vertex there. This in turn implies theNP-hardness of {−1, 1}-maximization and {0, 1}-maximization of a positive definite quadratic form. On the “good” side, there is an efficient algorithm for maximizing the Euclidean norm over an arbitraryrectangular parallelotope.

[1]  David G. Larman,et al.  Hyperrhombs inscribed to concex bodies , 1978, J. Comb. Theory, Ser. B.

[2]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[3]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[4]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[5]  L. Khachiyan,et al.  The polynomial solvability of convex quadratic programming , 1980 .

[6]  James B. Orlin,et al.  On the complexity of four polyhedral set containment problems , 2018, Math. Program..

[7]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[8]  R. Seidel Output-size sensitive algorithms for constructive problems in computational geometry , 1987 .

[9]  K. Zindler,et al.  Über konvexe Gebilde , 1920 .

[10]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[11]  Yinyu Ye,et al.  An extension of Karmarkar's projective algorithm for convex quadratic programming , 1989, Math. Program..

[12]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[13]  V. Klee,et al.  On the 0-1 Maximization of Positive Definite Quadratic Forms , 1989 .

[14]  Pierre Hansen,et al.  Unimodular functions , 1986, Discrete Applied Mathematics.

[15]  Pham Dinh Tao Algorithmes de calcul du maximum des formes quadratiques sur la boule unité de la norme du maximum , 1984 .

[16]  Herbert Naumann,et al.  Beliebige konvexe Polytope als Schnitte und Projektionen höherdimensionaler Würfel, Simplizes und Maßpolytope , 1956 .

[17]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[20]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[21]  Hiroshi Konno MAXIMIZING A CONVEX QUADRATIC FUNCTION OVER A HYPERCUBE , 1980 .

[22]  Pierre Hansen,et al.  The basic algorithm for pseudo-Boolean programming revisited , 1988, Discret. Appl. Math..

[23]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[24]  K. Mahler,et al.  Ein Übertragungsprinzip für konvexe Körper , 1939 .

[25]  P. Hammer,et al.  Quasimonotone Boolean Functions and Bistellar Graphs , 1980 .

[26]  Francisco Barahona,et al.  A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..

[27]  Pravin M. Vaidya,et al.  Fast algorithms for convex quadratic programming and multicommodity flows , 1986, STOC '86.

[28]  A. M. Macbeath,et al.  A Compactness Theorem For Affine Equivalence-Classes of Convex Regions , 1951, Canadian Journal of Mathematics.

[29]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[30]  O. Mangasarian,et al.  A variable-complexity norm maximization problem , 1986 .

[31]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[32]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..