Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite
Sr 2 FeMoO 6
暂无分享,去创建一个
C. Felser | M. Vergniory | C. Shekhar | M. G. Vergniory | Tirthankar Chakraborty | J. Noky | I. Robredo | K. Samanta | Suchitra Prasad | J. Kuebler | S. Guin
[1] F. de Juan,et al. Theoretical study of topological properties of ferromagnetic pyrite CoS2 , 2021, Journal of Physics D: Applied Physics.
[2] M. Manfra,et al. Topological superconductivity in hybrid devices , 2020 .
[3] Timur K. Kim,et al. Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. , 2020, Science advances.
[4] Jason M. Munro,et al. High-throughput search for magnetic and topological order in transition metal oxides , 2020, Science Advances.
[5] Yi Shi,et al. The discovery of dynamic chiral anomaly in a Weyl semimetal NbAs , 2020, Nature Communications.
[6] G. Fecher,et al. Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb2 , 2020, Advanced materials.
[7] C. Felser,et al. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds , 2020, npj Computational Materials.
[8] J. Denlinger,et al. Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films , 2019, Nature Materials.
[9] C. Felser,et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I , 2019, Nature.
[10] Y. Yu,et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.
[11] S. Elizabeth,et al. Two fold spin reorientation and field induced phase transition in Ho0.5Dy0.5FeO3 single crystal , 2018, Journal of Magnetism and Magnetic Materials.
[12] R. Arita,et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.
[13] Sarah J. Watzman,et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.
[14] C. Felser,et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP , 2017, Nature.
[15] Masashi Kawasaki,et al. The 2016 oxide electronic materials and oxide interfaces roadmap , 2016 .
[16] S. Pi,et al. New Class of 3D Topological Insulator in Double Perovskite. , 2016, The journal of physical chemistry letters.
[17] Y. Tokura,et al. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3 , 2016, Nature Communications.
[18] W. Duan,et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.
[19] Barry Bradlyn,et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.
[20] C. Felser,et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.
[21] Su-Yang Xu,et al. New type of Weyl semimetal with quadratic double Weyl fermions , 2015, Proceedings of the National Academy of Sciences.
[22] Shuang Jia,et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.
[23] Don Heiman,et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.
[24] H. Kee,et al. Topological crystalline metal in orthorhombic perovskite iridates , 2014, Nature Communications.
[25] X. D. Xu,et al. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .
[26] Z. J. Wang,et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.
[27] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[28] Brazil,et al. Magnetic phase evolution in the LaMn1−xFexO3+y system , 2008, 0804.4250.
[29] J. Goodenough,et al. Orbital ordering in orthorhombic perovskites , 2007 .
[30] S. Murakami,et al. Dissipationless Quantum Spin Current at Room Temperature , 2003, Science.
[31] J. Gopalakrishnan,et al. Magnetoresistance in the Double Perovskite Sr2CrMoO6 , 2000 .
[32] Nicola A. Hill,et al. Why Are There so Few Magnetic Ferroelectrics , 2000 .
[33] K.-I. Kobayashi,et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.
[34] P. Vilarinho,et al. Dielectric properties of Bi doped SrTiO 3 ceramics in the temperature range 500-800 K , 1998 .
[35] A. Lichtenstein,et al. First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .
[36] E. Hall. On a new action of the magnet on electric currents , 1879, American Journal of Science.