Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6

[1]  F. de Juan,et al.  Theoretical study of topological properties of ferromagnetic pyrite CoS2 , 2021, Journal of Physics D: Applied Physics.

[2]  M. Manfra,et al.  Topological superconductivity in hybrid devices , 2020 .

[3]  Timur K. Kim,et al.  Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. , 2020, Science advances.

[4]  Jason M. Munro,et al.  High-throughput search for magnetic and topological order in transition metal oxides , 2020, Science Advances.

[5]  Yi Shi,et al.  The discovery of dynamic chiral anomaly in a Weyl semimetal NbAs , 2020, Nature Communications.

[6]  G. Fecher,et al.  Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb2 , 2020, Advanced materials.

[7]  C. Felser,et al.  Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds , 2020, npj Computational Materials.

[8]  J. Denlinger,et al.  Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films , 2019, Nature Materials.

[9]  C. Felser,et al.  Axionic charge-density wave in the Weyl semimetal (TaSe4)2I , 2019, Nature.

[10]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[11]  S. Elizabeth,et al.  Two fold spin reorientation and field induced phase transition in Ho0.5Dy0.5FeO3 single crystal , 2018, Journal of Magnetism and Magnetic Materials.

[12]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[13]  Sarah J. Watzman,et al.  Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.

[14]  C. Felser,et al.  Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP , 2017, Nature.

[15]  Masashi Kawasaki,et al.  The 2016 oxide electronic materials and oxide interfaces roadmap , 2016 .

[16]  S. Pi,et al.  New Class of 3D Topological Insulator in Double Perovskite. , 2016, The journal of physical chemistry letters.

[17]  Y. Tokura,et al.  Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3 , 2016, Nature Communications.

[18]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[19]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[20]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[21]  Su-Yang Xu,et al.  New type of Weyl semimetal with quadratic double Weyl fermions , 2015, Proceedings of the National Academy of Sciences.

[22]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[23]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[24]  H. Kee,et al.  Topological crystalline metal in orthorhombic perovskite iridates , 2014, Nature Communications.

[25]  X. D. Xu,et al.  Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .

[26]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[27]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[28]  Brazil,et al.  Magnetic phase evolution in the LaMn1−xFexO3+y system , 2008, 0804.4250.

[29]  J. Goodenough,et al.  Orbital ordering in orthorhombic perovskites , 2007 .

[30]  S. Murakami,et al.  Dissipationless Quantum Spin Current at Room Temperature , 2003, Science.

[31]  J. Gopalakrishnan,et al.  Magnetoresistance in the Double Perovskite Sr2CrMoO6 , 2000 .

[32]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[33]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[34]  P. Vilarinho,et al.  Dielectric properties of Bi doped SrTiO 3 ceramics in the temperature range 500-800 K , 1998 .

[35]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[36]  E. Hall On a new action of the magnet on electric currents , 1879, American Journal of Science.