Model‐based geostatistics

Conventional geostatistical methodology solves the problem of predicting the realized value of a linear functional of a Gaussian spatial stochastic process S(x) based on observations Yi = S(xi) + Zi at sampling locations xi, where the Zi are mutually independent, zero‐mean Gaussian random variables. We describe two spatial applications for which Gaussian distributional assumptions are clearly inappropriate. The first concerns the assessment of residual contamination from nuclear weapons testing on a South Pacific island, in which the sampling method generates spatially indexed Poisson counts conditional on an unobserved spatially varying intensity of radioactivity; we conclude that a conventional geostatistical analysis oversmooths the data and underestimates the spatial extremes of the intensity. The second application provides a description of spatial variation in the risk of campylobacter infections relative to other enteric infections in part of north Lancashire and south Cumbria. For this application, we treat the data as binomial counts at unit postcode locations, conditionally on an unobserved relative risk surface which we estimate. The theoretical framework for our extension of geostatistical methods is that, conditionally on the unobserved process S(x), observations at sample locations xi form a generalized linear model with the corresponding values of S(xi) appearing as an offset term in the linear predictor. We use a Bayesian inferential framework, implemented via the Markov chain Monte Carlo method, to solve the prediction problem for non‐linear functionals of S(x), making a proper allowance for the uncertainty in the estimation of any model parameters.

[1]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[2]  P. Greig-Smith,et al.  The Use of Random and Contiguous Quadrats in the Study of the Structure of Plant Communities , 1952 .

[3]  J. Doob Stochastic processes , 1953 .

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[6]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[7]  G. Matheron Principles of geostatistics , 1963 .

[8]  D. J. Finney Some Properties of a Distribution Specified by Its Cumulants , 1963 .

[9]  G. Box An analysis of transformations (with discussion) , 1964 .

[10]  P. Whittle,et al.  Prediction and Regulation. , 1965 .

[11]  J. Naus Clustering of random points in two dimensions , 1965 .

[12]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[13]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[14]  M. S. Bartlett,et al.  Inference and stochastic processes , 1967 .

[15]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[16]  John D. Kalbfleisch,et al.  Application of Likelihood Methods to Models Involving Large Numbers of Parameters , 1970 .

[17]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[18]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[19]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[20]  G. Matheron Random sets theory and its applications to stereology , 1972 .

[21]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[22]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[23]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[24]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[25]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[26]  S. Ross A First Course in Probability , 1977 .

[27]  G. Matheron,et al.  A Simple Substitute for Conditional Expectation : The Disjunctive Kriging , 1976 .

[28]  I. Gibson Statistics and Data Analysis in Geology , 1976, Mineralogical Magazine.

[29]  B. Ripley Modelling Spatial Patterns , 1977 .

[30]  David R. Bellhouse,et al.  Some optimal designs for sampling in two dimensions , 1977 .

[31]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[32]  N. Cressie,et al.  Robust estimation of the variogram: I , 1980 .

[33]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[34]  Alex B. McBratney,et al.  The design of optimal sampling schemes for local estimation and mapping of regionalized variables—II: Program and examples☆ , 1981 .

[35]  Alex B. McBratney,et al.  The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—I: Theory and method , 1981 .

[36]  W. Cleveland LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression , 1981 .

[37]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[38]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[39]  Calvin Wyatt Rose,et al.  Mapping soil erosion and accumulation with the fallout isotope caesium-137 , 1983 .

[40]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[41]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[42]  David Russo,et al.  Design of an Optimal Sampling Network for Estimating the Variogram , 1984 .

[43]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[44]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[45]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[46]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[47]  G. Matheron,et al.  Disjunctive kriging revisited: Part II , 1986 .

[48]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[49]  G. Matheron,et al.  Disjunctive kriging revisited: Part I , 1986 .

[50]  A. McBratney,et al.  Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates , 1986 .

[51]  D. Clayton,et al.  Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. , 1987, Biometrics.

[52]  A. Warrick,et al.  Optimization of Sampling Locations for Variogram Calculations , 1987 .

[53]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[54]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[55]  Brian D. Ripley,et al.  Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .

[56]  H. Omre Bayesian kriging—Merging observations and qualified guesses in kriging , 1987 .

[57]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[58]  References to discussion , 1988 .

[59]  Richard A. Becker,et al.  The New S Language , 1989 .

[60]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[61]  N. Cressie Spatial prediction and ordinary kriging , 1988 .

[62]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[63]  Kjetil B. Halvorsen,et al.  A Bayesian Approach to Kriging , 1989 .

[64]  Valerii V. Fedorov,et al.  Kriging and other Estimators of Spatial Field Characteristics (With Special Reference to Environmental Studies) , 1989 .

[65]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[66]  John T. Kent,et al.  Continuity Properties for Random Fields , 1989 .

[67]  N. Cressie,et al.  Spatial Modeling of Regional Variables , 1993 .

[68]  Henning Omre,et al.  The Bayesian bridge between simple and universal kriging , 1989 .

[69]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .

[70]  Timothy B. Spruill,et al.  Two Approaches to Design of Monitoring Networks , 1990 .

[71]  G. Wahba Spline models for observational data , 1990 .

[72]  C. Braak,et al.  Model-free estimation from spatial samples: A reappraisal of classical sampling theory , 1990 .

[73]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[74]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[75]  N. Cressie,et al.  Statistics for Spatial Data. , 1992 .

[76]  She,et al.  Physical model of intermittency in turbulence: Near-dissipation-range non-Gaussian statistics. , 1991 .

[77]  A. Stein,et al.  Universal kriging and cokriging as a regression procedure. , 1991 .

[78]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[79]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[80]  J. Bouma,et al.  Simulation of moisture deficits and areal interpolation by universal cokriging , 1991 .

[81]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[82]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[83]  A. Raftery,et al.  Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .

[84]  D. Zimmerman,et al.  A network design criterion for estimating selected attributes of the semivariogram , 1991 .

[85]  J. Zidek,et al.  Interpolation with uncertain spatial covariances: a Bayesian alternative to Kriging , 1992 .

[86]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[87]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[88]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[89]  A. V. Vecchia A New Method of Prediction for Spatial Regression Models with Correlated Errors , 1992 .

[90]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[91]  D. Spiegelhalter,et al.  Modelling Complexity: Applications of Gibbs Sampling in Medicine , 1993 .

[92]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[93]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[94]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[95]  Anthony N. Pettitt,et al.  Sampling Designs for Estimating Spatial Variance Components , 1993 .

[96]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[97]  Xavier Freulon,et al.  Conditional simulation of a Gaussian random vector with non linear and/or noisy observations , 1994 .

[98]  Peter Guttorp,et al.  20 Methods for estimating heterogeneous spatial covariance functions with environmental applications , 1994, Environmental Statistics.

[99]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[100]  Katherine Campbell,et al.  Introduction to disjunctive kriging and non-linear geostatistics , 1994 .

[101]  David A. James Modern Applied Statistics With S-PLUS , 1994 .

[102]  Geoffrey M. Laslett,et al.  Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .

[103]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[104]  R. Sutherland Spatial variability of137Cs and the influence of sampling on estimates of sediment redistribution , 1994 .

[105]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[106]  P. Guttorp,et al.  A space-time analysis of ground-level ozone data , 1994 .

[107]  Richard Verrall,et al.  Premium Rating by Geographic Area Using Spatial Models , 1994, ASTIN Bulletin.

[108]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[109]  C. Geyer On the Convergence of Monte Carlo Maximum Likelihood Calculations , 1994 .

[110]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[111]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[112]  Andrew B. Lawson Using Spatial Gaussian Priors to Model Heterogeneity in Environmental Epidemiology , 1994 .

[113]  Miguel A. Mariño,et al.  Sampling Design for Contaminant Distribution in Lake Sediments , 1995 .

[114]  Igor Rychlik,et al.  How reliable are contour curves? Confidence sets for level contours , 1995 .

[115]  Stuart R. Lipsitz,et al.  A Model for Binary Time Series Data with Serial Odds Ratio Patterns , 1995 .

[116]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[117]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[118]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[119]  Sylvia Richardson,et al.  Bayesian mapping of disease , 1995 .

[120]  Stephen L. Rathbun,et al.  Estimation of Poisson Intensity Using Partially Observed Concomitant Variables , 1996 .

[121]  A. Azzalini Statistical Inference Based on the likelihood , 1996 .

[122]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[123]  Jim Freeman,et al.  Stochastic Processes (Second Edition) , 1996 .

[124]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[125]  Dietrich Stoyan,et al.  On Variograms in Point Process Statistics , 1996 .

[126]  David Barber,et al.  Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo , 1996, NIPS.

[127]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[128]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[129]  A. Molli'e Bayesian mapping of disease , 1996 .

[130]  H. Winkels,et al.  Optimal cost - effective sampling for monitoring and dredging of contaminated sediments , 1997 .

[131]  W. W. Stroup,et al.  A Generalized Linear Model Approach to Spatial Data Analysis and Prediction , 1997 .

[132]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[133]  R. Wolfinger,et al.  Spatial Regression Models, Response Surfaces, and Process Optimization , 1997 .

[134]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[135]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[136]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[137]  Alfred Stein,et al.  Optimization of environmental sampling using interactive GIS. , 1997 .

[138]  C. Tilke Introduction to Disjunctive Kriging and Non-Linear Geostatistics , 1997 .

[139]  R. Royall Statistical Evidence: A Likelihood Paradigm , 1997 .

[140]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[141]  David G. T. Denison,et al.  Bayesian MARS , 1998, Stat. Comput..

[142]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[143]  R. Wolpert,et al.  Poisson/gamma random field models for spatial statistics , 1998 .

[144]  Noel A Cressie,et al.  The Variance-Based Cross-Variogram: You Can Add Apples and Oranges , 1998 .

[145]  J. Andrew Royle,et al.  An algorithm for the construction of spatial coverage designs with implementation in SPLUS , 1998 .

[146]  Stephen L. Rathbun,et al.  Spatial modelling in irregularly shaped regions: Kriging estuaries , 1998 .

[147]  C. C. Homes,et al.  Bayesian Radial Basis Functions of Variable Dimension , 1998, Neural Computation.

[148]  Stuart G. Coles,et al.  Extreme hurricane wind speeds: estimation, extrapolation and spatial smoothing. , 1998 .

[149]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[150]  P J Diggle,et al.  Nonparametric estimation of covariance structure in longitudinal data. , 1998, Biometrics.

[151]  Håkon Tjelmeland,et al.  Markov Random Fields with Higher‐order Interactions , 1998 .

[152]  S. Lele,et al.  A Composite Likelihood Approach to Binary Spatial Data , 1998 .

[153]  Alfred Stein,et al.  Constrained Optimization of Spatial Sampling using Continuous Simulated Annealing , 1998 .

[154]  B. Everitt,et al.  Analysis of longitudinal data , 1998, British Journal of Psychiatry.

[155]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[156]  M C Thomson,et al.  Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. , 1999, The American journal of tropical medicine and hygiene.

[157]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[158]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[159]  W. G. Müller,et al.  Optimal designs for variogram estimation , 1999 .

[160]  J. W. Groenigen,et al.  Constrained optimisation of soil sampling for minimisation of the kriging variance , 1999 .

[161]  Werner G. Müller,et al.  Least-squares fitting from the variogram cloud , 1999 .

[162]  John Hay Statistical modelling for non-Gaussian time series data with explanatory variables , 1999 .

[163]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[164]  William N. Venables,et al.  S Programming , 2000 .

[165]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[166]  Noel A Cressie,et al.  11 Spatial statistical methods for environmental epidemiology , 2000, Bioenvironmental and public health statistics.

[167]  David A. Elston,et al.  SPATIAL ASYNCHRONY AND DEMOGRAPHIC TRAVELING WAVES DURING RED GROUSE POPULATION CYCLES , 2000 .

[168]  Anthony N. Pettitt,et al.  Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data , 2000 .

[169]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[170]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[171]  G. Pieters,et al.  Optimizing spatial sampling for multivariate contamination in urban areas , 2000 .

[172]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[173]  Nicola G. Best,et al.  A shared component model for detecting joint and selective clustering of two diseases , 2001 .

[174]  J. Møller,et al.  Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models , 2001 .

[175]  T. Gneiting,et al.  Analogies and correspondences between variograms and covariance functions , 2001, Advances in Applied Probability.

[176]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[177]  Philip Hougaard,et al.  Analysis of Multivariate Survival Data , 2001 .

[178]  M. Boussinesq,et al.  Relationships between the prevalence and intensity of Loa loa infection in the Central province of Cameroon , 2001, Annals of tropical medicine and parasitology.

[179]  Anders Brix,et al.  Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds , 2001 .

[180]  Youngjo Lee,et al.  Modelling and analysing correlated non-normal data , 2001 .

[181]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[182]  P. Diggle,et al.  Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .

[183]  Innocent Takougang,et al.  Rapid assessment method for prevalence and intensity of Loa loa infection. , 2002, Bulletin of the World Health Organization.

[184]  Louise Ryan,et al.  Modeling Spatial Survival Data Using Semiparametric Frailty Models , 2002, Biometrics.

[185]  Brian D. Ripley,et al.  geoRglm: A Package for Generalised Linear Spatial Models , 2002 .

[186]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[187]  P. Diggle,et al.  Bayesian Inference in Gaussian Model-based Geostatistics , 2002 .

[188]  Hao Zhang On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.

[189]  R. Lark Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood , 2002 .

[190]  Ole F. Christensen Methodology and applications in non-linear model-based geostatistics , 2002 .

[191]  R. Henderson,et al.  Modelling spatial variation in leukaemia survival data. , 2002 .

[192]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[193]  R. Waagepetersen,et al.  Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.

[194]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[195]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[196]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[197]  B. Carlin,et al.  Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. , 2003, Biostatistics.

[198]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[199]  A. Gelfand,et al.  A Bayesian coregionalization approach for multivariate pollutant data , 2003 .

[200]  S. Wood Thin plate regression splines , 2003 .

[201]  Dietrich Stoyan,et al.  The use of marked point processes in ecological and environmental forest studies , 1995, Environmental and Ecological Statistics.

[202]  Valérie Obsomer,et al.  Mapping the distribution of Loa loa in Cameroon in support of the African Programme for Onchocerciasis Control , 2004, Filaria journal.

[203]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[204]  Peter J. Diggle,et al.  Detecting dependence between marks and locations of marked point processes , 2004 .

[205]  Multivariate Geostatistics , 2004 .

[206]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[207]  J.-P. Dubois,et al.  Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics , 1997, Environmental and Ecological Statistics.

[208]  David Higdon,et al.  A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.

[209]  O. F. Christensen Monte Carlo Maximum Likelihood in Model-Based Geostatistics , 2004 .

[210]  C. F. Sirmans,et al.  Nonstationary multivariate process modeling through spatially varying coregionalization , 2004 .

[211]  Peter J. Diggle,et al.  Point process methodology for on‐line spatio‐temporal disease surveillance , 2005 .

[212]  Sudipto Banerjee,et al.  On Geodetic Distance Computations in Spatial Modeling , 2005, Biometrics.

[213]  Debashis Mondal,et al.  First-order intrinsic autoregressions and the de Wijs process , 2005 .

[214]  Peter J. Diggle,et al.  Bayesian Geostatistical Design , 2006 .

[215]  G. Roberts,et al.  OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.

[216]  Gareth O. Roberts,et al.  Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .

[217]  Zhe Jiang,et al.  Spatial Statistics , 2013 .