Simulating cardinal preferences in Boolean games: A proof technique

Abstract Boolean games are a succinct representation of strategic games with a logical flavour. While they have proved to be a popular formalism in the multiagent community, a commonly cited shortcoming is their inability to express richer utilities than success or failure. In addition to being a modelling limitation, this parsimony of preference has made proving complexity bounds difficult. We address the second of these issues by demonstrating how cardinal utilities can be simulated via expected utility. This allows us to prove that RationalNash and IrrationalNash are NEXP-hard, and to translate hardness results for IsNash and DValue into the Boolean games framework.

[1]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[2]  Michael Wooldridge,et al.  Towards tractable Boolean games , 2012, AAMAS.

[3]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[4]  Egor Ianovski,et al.  ∃GUARANTEENASH for Boolean games is NEXP-Hard , 2014, KR 2014.

[5]  Wiebe van der Hoek,et al.  Representation and Complexity in Boolean Games , 2004, JELIA.

[6]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[7]  Vittorio Bilò,et al.  Complexity of Rational and Irrational Nash Equilibria , 2011, SAGT.

[8]  Paolo Turrini,et al.  Endogenous Boolean Games , 2013, IJCAI.

[9]  Christos H. Papadimitriou,et al.  Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..

[10]  Cees Witteveen,et al.  Boolean games , 2001 .

[11]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[12]  Marie-Christine Lagasquie-Schiex,et al.  Dependencies between players in Boolean games , 2009, Int. J. Approx. Reason..

[13]  Michael Wooldridge,et al.  Bad equilibria (and what to do about them) , 2012, ECAI.

[14]  Maria J. Serna,et al.  Pure Nash Equilibria in Games with a Large Number of Actions , 2005, MFCS.

[15]  Michael Wooldridge,et al.  Iterated Boolean games , 2013, Inf. Comput..

[16]  Grant Schoenebeck,et al.  The Computational Complexity of Nash Equilibria in Concisely Represented Games , 2012, TOCT.

[17]  Bruno Codenotti,et al.  On the computational complexity of Nash equilibria for (0, 1) bimatrix games , 2005, Inf. Process. Lett..

[18]  Marios Mavronicolas,et al.  Weighted Boolean Formula Games , 2015, Algorithms, Probability, Networks, and Games.

[19]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[20]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[21]  Ciprian Dobre,et al.  A game-theoretic approach to cooperation in multi-agent systems , 2012, WIMS '12.

[22]  Marie-Christine Lagasquie-Schiex,et al.  Effectivity functions and efficient coalitions in Boolean games , 2012, Synthese.

[23]  Ana L. C. Bazzan,et al.  Evolving Mechanisms in Boolean Games , 2013, MATES.

[24]  Serena Villata,et al.  Dependency in Cooperative Boolean Games , 2013, J. Log. Comput..

[25]  Maria J. Serna,et al.  Equilibria problems on games: Complexity versus succinctness , 2011, J. Comput. Syst. Sci..

[26]  Xi Chen,et al.  The approximation complexity of win-lose games , 2007, SODA '07.

[27]  Sarit Kraus,et al.  Manipulating Boolean Games through Communication , 2011, IJCAI.

[28]  Todd R. Kaplan,et al.  A Program for Finding Nash Equilibria , 1993 .

[29]  Daniel M. Kane,et al.  On the complexity of two-player win-lose games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[30]  Sarit Kraus,et al.  Designing incentives for Boolean games , 2011, AAMAS.

[31]  Michael Wooldridge,et al.  Hard and soft equilibria in boolean games , 2014, AAMAS.

[32]  Thomas Lukasiewicz,et al.  Combining Boolean Games with the Power of Ontologies for Automated Multi-attribute Negotiation in the Semantic Web , 2008, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[33]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[34]  Lance Fortnow,et al.  On the Complexity of Succinct Zero-Sum Games , 2005, Computational Complexity Conference.

[35]  Vittorio Bilò,et al.  The Complexity of Decision Problems about Nash Equilibria in Win-Lose Games , 2012, SAGT.

[36]  Michael Wooldridge,et al.  Electric Boolean Games: Redistribution Schemes for Resource-Bounded Agents , 2015, AAMAS.

[37]  Sarit Kraus,et al.  Delegating Decisions in Strategic Settings , 2012, IEEE Transactions on Artificial Intelligence.

[38]  Jérôme Lang,et al.  Compact preference representation and Boolean games , 2006, Autonomous Agents and Multi-Agent Systems.

[39]  Vittorio Bilò On Satisfiability Games and the Power of Congestion Games , 2007, AAIM.

[40]  Maria J. Serna,et al.  Polynomial Space Suffices for Deciding Nash Equilibria Properties for Extensive Games with Large Trees, , 2005, ISAAC.

[41]  Amnon Meisels,et al.  Taxation search in boolean games , 2013, AAMAS.

[42]  Michael Wooldridge,et al.  Boolean Games with Epistemic Goals , 2013, LORI.

[43]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[44]  Sarit Kraus,et al.  Cooperative Boolean games , 2008, AAMAS.

[45]  Marie-Christine Lagasquie-Schiex,et al.  Translation of an Argumentation Framework into a CP-Boolean Game , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[46]  Bernhard von Stengel,et al.  Fast algorithms for finding randomized strategies in game trees , 1994, STOC '94.